Tepotinib (EMD 1214063; MSC 2156119)

别名: EMD-1214063; MSC-2156119; EMD1214063; EMD 1214063; MSC2156119; MSC 2156119; Tepotinib 特泊替尼; 3-[1,6-二氢-1-[[3-[5-[(1-甲基-4-哌啶基)甲氧基]-2-嘧啶基]苯基]甲基]-6-氧代-3-哒嗪基]苯腈; EMD1214063
目录号: V0596 纯度: =99.52%
Tepotinib(原 EMD 1214063、EMD-1214063;MSC2156119;MSC-2156119;Tepmetko)是一种选择性 c-Met 抑制剂,具有潜在的抗肿瘤活性。
Tepotinib (EMD 1214063; MSC 2156119) CAS号: 1100598-32-0
产品类别: c-MET
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
50mg
100mg
500mg
1g

Other Forms of Tepotinib (EMD 1214063; MSC 2156119):

  • Tepotinib hydrochloride
  • Tepotinib hydrochloride monohydrate
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: =99.52%

产品描述
Tepotinib(原 EMD 1214063、EMD-1214063;MSC2156119;MSC-2156119;Tepmetko)是一种选择性 c-Met 抑制剂,具有潜在的抗肿瘤活性。 Tepotinib 已于 2020 年在日本获得批准,并于 2021 年在美国获得批准,用于治疗成人转移性非小细胞肺癌,其肿瘤具有导致间充质-上皮过渡外显子 14 跳跃的突变。它抑制 c-Met 的 IC50 为 4 nM,并且抑制 c-Met 的选择性是其他激酶(如 IRAK4、TrkA、Axl、IRAK1 和 Mer)的 200 倍以上。 Tepotinib 可抑制 A549 细胞中 HGF 诱导的 c-Met 磷酸化,平均 IC50 为 6 nM。它还显着抑制 c-Met 下游信号通路的激活,包括 Akt、Gab-1 和 Erk1/2 的磷酸化。
生物活性&实验参考方法
靶点
c-Met (IC50 = 4 nM)
体外研究 (In Vitro)
体外活性:EMD 1214063 抑制 A549 细胞中 HGF 诱导的 c-Met 磷酸化,IC50 为 6 nM。 EMD 1214063 处理可诱导 EBC-1 细胞中 c-Met 组成型磷酸化显着减少,IC50 为 9 nM。 EMD 1214063 在 EBC-1、MKN-45 和 Hs746T 细胞中有效阻断 c-Met 酶主要下游效应子的磷酸化,例如 Grb2、Gab1、Sos、PLCγ 和磷酸肌醇 3-激酶,范围为 1至 10 纳米。 EMD 1214063 显着抑制 MKN-45 细胞的活力,IC50 小于 1 nM。用 EMD 1214063(低至 0.1 nM)处理可抑制 HGF 诱导的 NCI-H441 细胞迁移,而 100 nM 至 1 μM 的浓度几乎完全阻止它。激酶测定:Tepotinib (EMD-1214063) 是一种有效的选择性 c-Met 抑制剂,IC50 为 4 nM,对 c-Met 的选择性是 IRAK4、TrkA、Axl、IRAK1 和 Mer 的 200 倍以上。
体内研究 (In Vivo)
EMD 1214063 治疗剂量为 10 mg/kg 或更高,可在至少 72 小时的时间内抑制 Hs746T 异种移植肿瘤中 c-Met 磷酸化超过 90%。 EMD 1214063 诱导细胞周期蛋白 D1 表达减少 50% 以上,并在使用 100 mg/kg 剂量治疗 96 小时后仍持续存在。 EMD 1214063 治疗后还观察到 p27 和裂解的 caspase-3 的短暂诱导。 EMD 1214063(每天 15 毫克/公斤)治疗可诱导胃癌异种移植物 Hs746T 完全消退,其中 c-Met 被扩增、过表达,并且以不依赖配体的方式激活。
酶活实验
EMD 1214063和EMD 1204831选择性地抑制c-Met受体酪氨酸激酶活性。与它们对242种人类激酶的作用相比,它们的抑制活性是有效的[分别为抑制50%浓度(IC50)、3 nmol/L和9 nmol/L]和高度选择性的。EMD 1214063和EMD 1204831均以剂量依赖的方式抑制c-Met磷酸化和下游信号传导,但其抑制活性的持续时间不同。[1]
c-Met体外激酶测定[1]
使用242种不同的激酶在体外评估EMD 1214063或EMD 1204831(1和10μmol/L)对激酶的抑制作用。用闪板法测定生物化学活性。将His6标记的重组人c-Met激酶结构域(Aa 974–end;20 ng)和生物素化的聚Ala-Glu-Lys-Tyr(6:2:5:1;500 ng)在室温下与测试化合物一起或不与测试化合物在100μL缓冲液中孵育90分钟,该缓冲液含有0.3μCi 33P-ATP、2.5μg聚乙二醇20.000和1%二甲基亚砜(DMSO),如前所述。用TopCount微孔板闪烁和发光计数器测量放射性。使用RS/1软件程序通过非线性回归分析计算抑制50%浓度值(IC50)。[1]
磷酸化c-Met捕获ELISA[1]
在Nunc Immuno MicroWell 96孔固体板中通过c-Met捕获ELISA评估总的c-Met磷酸化。A549人癌症细胞在治疗前2天接种,血清饥饿20小时,并在第3天用不同浓度的EMD 1214063或EMD 1204831或0.2%DMSO在37°C、5%CO2下治疗45分钟。在用100 ng/mL HGF刺激5分钟后,用补充有蛋白酶和磷酸酶抑制剂的70μL/孔冰冷裂解缓冲液[20 nmol/L HEPES,pH 7,4;10%(V/V)甘油;150 nmol/L NaCl;1%(V/V的)Triton-X-100;2 nmol/L EDTA]裂解细胞。在冲洗实验中,A549用EMD 1214063或EMD 1204831处理45分钟,洗涤,并在无血清培养基中孵育14小时,然后用HGF(100ng/mL)刺激。 在ELISA中,捕获抗体对c-Met细胞外结构域是特异性的,而抗磷脂-生物素标记的抗体用于检测。使用链霉亲和素-过氧化物酶缀合物和化学发光读数揭示酪氨酸磷酸化。
生化分析[1]
在EBC-1细胞中通过蛋白质印迹分析分析c-Met、Gab-1、Akt和Erk1/2的磷酸化。简言之,细胞以每孔3×106个细胞的密度接种,血清饥饿20小时,并在与EMD 1214063孵育后的第3天裂解。通过SDS-PAGE分离蛋白质并将其吸附在硝化纤维素膜上。用Tris缓冲盐水封闭膜,并在4°C的一级抗体溶液(抗pMet、抗pAkt、抗pERK1/2、抗Gab1)中孵育过夜。用装有Quantity One 1-D分析软件的VersaDoc MP 5000成像系统通过化学发光检测蛋白质。
细胞实验
Tepotinib (EMD-1214063) 是一种有效且具有选择性的 c-Met 抑制剂。它的 IC50 为 4 nM,对 c-Met 的选择性比 IRAK4、TrkA、Axl、IRAK1 和 Mer 的选择性高 200 倍以上。
伤口愈合试验和增殖试验[1]
伤口愈合试验如前所述进行。简言之,用无菌移液管尖端在单层NCI-H441癌症细胞上产生划痕。在存在或不存在100ng/mL HGF的情况下,在24小时内监测EMD 1210463和EMD 1204831对细胞间隙闭合的影响。所有增殖和集落形成测定在4个重复中进行,并包括4个DMSO载体对照。IC50值通过GraphPad Prism v5中的4PL拟合确定。
离体肿瘤样品的药效学标志物[1]
通过对冷冻离体肿瘤样品的蛋白质印迹分析来研究c-Met自磷酸化。根据制造商的说明,使用Precellys 24均质器或Precellys陶瓷裂解管(PEQLab Ltd)对肿瘤组织进行机械均质、裂解。裂解物的进一步制备和通过SDS-PAGE的蛋白质分离如已经对EBC-1细胞描述的那样进行。 在福尔马林固定的石蜡包埋切片上,通过免疫组织化学(IHC)分析组蛋白H3磷酸化和细胞周期停滞和凋亡的生物标志物(细胞周期蛋白D1、p27和裂解的活化的capase-3)。根据制造商的说明,使用Discovery染色仪器和OmniMap试剂盒进行IHC。切片用苏木精复染。
动物实验
Human gastric carcinoma xenografts Hs746T
15 mg/kg
daily
Xenograft models of antitumor efficacy[1]
The antitumor efficacy of EMD 1214063 or EMD 1204831 was investigated in mouse xenograft models. CD-1 or BALB/C nude mice were injected subcutaneously with human cancer cell lines KP-4, U87MG: 10 × 106 cells in 100 μL, Hs746T, EBC-1: 5 × 106 cells in 100 μL. As soon as the tumor reached the linear growth phase (70–150 mm3), tumor-bearing mice (10 mice/group) were injected daily with the indicated doses of EMD 1214063 or EMD 1204831, or vehicle. Body weight and tumor size [length (L) and width (W)] were measured twice weekly. The tumor volume was calculated using the formula L × W2/2. Statistical significance was determined by one-way ANOVA. P ≤ 0.05 were considered significant.
Pharmacokinetic and pharmacodynamic studies[1]
Plasma and tumor drug concentrations were measured using high-performance liquid chromatography (HPLC) and mass spectrometry (MS). In brief, protein precipitation was carried out in methanol for plasma samples, and in ethanol/water 80:20 (v/v) using a Precellys 24 homogenizer for homogenized tumor samples. The HPLC/tandem mass spectrometry (MS-MS) system consisted of an Agilent 1100 Series HPLC system with a CTC HTC PAL Autosampler coupled to an Applied Biosystems API4000 mass spectrometer. HPLC separation was achieved on a reversed-phase column (Chromolith SpeedROD RP-18e, 50–3 mm) using gradient elution (eluent A: formic acid 0.1%; eluent B: acetonitrile). Selectivity was achieved using multiple reaction monitoring (MRM) for the MS/MS detection of the compounds. For the in vivo pharmacodynamic studies, all animal studies were conducted according to standard procedures approved by local animal welfare authorities. Mice were injected subcutaneously with 5 × 106 Hs746T cells (100 μL). Once the tumor volume had reached 600 to 1,000 mm3, mice were randomized into different experimental groups, receiving a single oral dose of 3, 10, 30, and 100 mg/kg of EMD 1214063, EMD 1204831, or vehicle. Tumor and plasma samples were collected at 3, 6, 12, 24, 48, 72, and 96 hours after treatment. Each experimental group comprised 4 mice per dose and time point. Samples of the tumor tissue were snap-frozen for pharmacokinetic and biomarker analyses, or formalin-fixed for immunohistochemical analysis.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
The absolute bioavailability of tepotinib following oral administration is approximately 72%. At the recommended dosage of 450mg once daily, the median Tmax is 8 hours and the mean steady-state Cmax and AUC0-24h were 1,291 ng/mL and 27,438 ng·h/mL, respectively. Co-administration with a high-fat, high-calorie meal increases the AUC and Cmax of tepotinib by approximately 1.6-fold and 2-fold, respectively.
Following oral administration, approximately 85% of the given dose is excreted in the feces with the remainder excreted in the urine. Unchanged parent drug accounts for roughly half of the dose excreted in the feces, with the remainder comprising the demethylated M478 metabolite, a glucuronide metabolite, the racemic M506 metabolite, and some minor oxidative metabolites. Unchanged parent drug also accounts for roughly half of the dose excreted in the urine, with the remainder comprising a glucuronide metabolite and a pair of N-oxide diastereomer metabolites.
The mean apparent volume of distribution is 1,038L.
The apparent clearance of tepotinib is 23.8 L/h.
Metabolism / Metabolites
Tepotinib is metabolized primarily by CYP3A4 and CYP2C8, with some apparent contribution by unspecified UGT enzymes. The metabolite M506 is the major circulating metabolite, comprising approximately 40.4% of observed drug material in plasma, while the M668 glucuronide metabolite has been observed in plasma at much lower quantities (~4% of an orally administered dose). A total of 10 phase I and phase II metabolites have been detected following tepotinib administration, most of which are excreted in the feces.
Biological Half-Life
Following oral administration, the half-life of tepotinib is approximately 32 hours.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
In the prelicensure clinical trials of tepotinib in patients with solid tumors harboring MET mutations, liver test abnormalities were frequent although usually self-limited and mild. Some degree of ALT elevations arose in 44% of tepotinib treated patients and were above 5 times the upper limit of normal (ULN) in 4%. In these trials that enrolled 255 patients, dose interruptions due to ALT or AST elevations occurred in 3%, but permanent discontinuations in less than 1%. The liver test abnormalities had a median onset of 30 days after initiation of therapy. While serum aminotransferase elevations were occasionally quite high (5 to 20 times upper limit of normal), there were no accompanying elevations in serum bilirubin and no patient developed clinically apparent liver injury with jaundice. The product label for tepotinib recommends monitoring for routine liver tests before, at 2 week intervals during the first 3 months of therapy, and monthly thereafter as clinically indicated.
Likelihood score: E* (unproven but suspected rare cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of tepotinib during breastfeeding. Because tepotinib is 98% bound to plasma proteins, the amount in milk is likely to be low. However, because of its potential toxicity in the breastfed infant and its half-life of 32 hours, the manufacturer recommends that breastfeeding be discontinued during tepotinib therapy and for 1 week after the last dose.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Tepotinib is approximately 98% protein-bound in plasma, primarily to serum albumin and alpha-1-acid glycoprotein. Plasma protein binding is independent of drug concentration at clinically relevant exposures.
参考文献

[1]. Clin Cancer Res . 2013 Jun 1;19(11):2941-51.

其他信息
Tepotinib is a MET tyrosine kinase inhibitor intended to treat a variety of MET-overexpressing solid tumors. It was originally developed in partnership between EMD Serono and the University of Texas M.D. Anderson Cancer Center in 2009 and has since been investigated in the treatment of neuroblastoma, gastric cancers, non-small cell lung cancer, and hepatocellular carcinoma. MET is a desirable target in the treatment of certain solid tumors as it appears to play a critical role, both directly and indirectly, in the growth and proliferation of tumors in which it is overexpressed and/or mutated. Tepotinib was first approved in Japan in March 2020 for the treatment of non-small cell lung cancers (NSCLC) with MET alterations, and was subsequently granted accelerated approval by the US FDA in February 2021, under the brand name Tepmetko, for the treatment of adult patients with metastatic NSCLC and MET exon 14 skipping alterations. It is the first oral MET-targeted tyrosine kinase inhibitor to allow for once-daily dosing, an advantage that may aid in easing the pill burden often associated with chemotherapeutic regimens. In February 2022, tepotinib was approved for use in Europe.
Tepotinib is a Kinase Inhibitor. The mechanism of action of tepotinib is as a Mesenchymal Epithelial Transition Inhibitor, and P-Glycoprotein Inhibitor.
Tepotinib is an orally available, small molecule inhibitor of the mesenchymal-epithelial transition (MET) factor tyrosine kinase receptor that is used to treat selected cases of non-small cell lung cancer (NSCLC). Serum aminotransferase elevations are common during therapy with tepotinib, but it has not been linked to instances of clinically apparent liver injury with jaundice.
Tepotinib is an orally bioavailable inhibitor of MET tyrosine kinase with potential antineoplastic activity. Tepotinib selectively binds to MET tyrosine kinase and disrupts MET signal transduction pathways, which may induce apoptosis in tumor cells overexpressing this kinase. The receptor tyrosine kinase MET (also known as hepatocyte growth factor receptor or HGFR), is the product of the proto-oncogene c-Met and is overexpressed or mutated in many tumor cell types; this protein plays key roles in tumor cell proliferation, survival, invasion, and metastasis, and tumor angiogenesis.
See also: Tepotinib Hydrochloride (active moiety of).
Drug Indication
Tepotinib is indicated for the treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) who have mesenchymal-epithelial transition (_MET_) exon 14 skipping alterations.
Tepmetko as monotherapy is indicated for the treatment of adult patients with advanced non-small cell lung cancer (NSCLC) harbouring alterations leading to mesenchymal-epithelial transition factor gene exon 14 (METex14) skipping, who require systemic therapy following prior treatment with immunotherapy and/or platinum-based chemotherapy.
Treatment of non-small cell lung carcinoma (NSCLC)
Mechanism of Action
Mesenchymal-epithelial transition factor (MET) is a receptor tyrosine kinase found overexpressed and/or mutated in a variety of tumor types, thus making it a desirable target in their treatment. MET plays a critical role in the proliferation, survival, invasion, and mobilization of tumor cells, and aberrant MET activation is thought to contribute to the development of more aggressive cancers with poorer prognoses. Tepotinib is a kinase inhibitor directed against MET, including variants with exon 14 skipping - it inhibits MET phosphorylation and subsequent downstream signaling pathways in order to inhibit tumor cell proliferation, anchorage-independent growth, and migration of MET-dependent tumor cells. Tepotinib has also been observed to down-regulate the expression of epithelial-mesenchymal transition (EMT) promoting genes (e.g. MMP7, COX-2, WNT1, MUC5B, and c-MYC) and upregulate the expression of EMT-suppressing genes (e.g. MUC5AC, MUC6, GSK3β, and E-cadherin) in c-MET-amplified gastric cancer cells, suggesting that the tumor-suppressing activity of tepotinib is driven, at least in part, by the negative regulation of c-MET-induced EMT. It has also been shown to inhibit melatonin 1B and nischarin at clinically relevant concentrations, though the relevance of this activity in regards to tepotinib's mechanism of action is unclear.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C29H28N6O2
分子量
492.57
精确质量
492.227
元素分析
C, 70.71; H, 5.73; N, 17.06; O, 6.50
CAS号
1100598-32-0
相关CAS号
1100598-32-0; 1103508-80-0 (HCl);1946826-82-9
PubChem CID
25171648
外观&性状
White to light yellow solid powder
密度
1.3±0.1 g/cm3
沸点
626.5±65.0 °C at 760 mmHg
闪点
332.7±34.3 °C
蒸汽压
0.0±1.8 mmHg at 25°C
折射率
1.660
LogP
2.72
tPSA
96.93
氢键供体(HBD)数目
0
氢键受体(HBA)数目
7
可旋转键数目(RBC)
7
重原子数目
37
分子复杂度/Complexity
880
定义原子立体中心数目
0
SMILES
O(C1=C([H])N=C(C2=C([H])C([H])=C([H])C(=C2[H])C([H])([H])N2C(C([H])=C([H])C(C3=C([H])C([H])=C([H])C(C#N)=C3[H])=N2)=O)N=C1[H])C([H])([H])C1([H])C([H])([H])C([H])([H])N(C([H])([H])[H])C([H])([H])C1([H])[H]
InChi Key
AHYMHWXQRWRBKT-UHFFFAOYSA-N
InChi Code
InChI=1S/C29H28N6O2/c1-34-12-10-21(11-13-34)20-37-26-17-31-29(32-18-26)25-7-3-5-23(15-25)19-35-28(36)9-8-27(33-35)24-6-2-4-22(14-24)16-30/h2-9,14-15,17-18,21H,10-13,19-20H2,1H3
化学名
3-[1-[[3-[5-[(1-methylpiperidin-4-yl)methoxy]pyrimidin-2-yl]phenyl]methyl]-6-oxopyridazin-3-yl]benzonitrile
别名
EMD-1214063; MSC-2156119; EMD1214063; EMD 1214063; MSC2156119; MSC 2156119; Tepotinib
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~5 mg/mL (~10.2 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.0302 mL 10.1508 mL 20.3017 mL
5 mM 0.4060 mL 2.0302 mL 4.0603 mL
10 mM 0.2030 mL 1.0151 mL 2.0302 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03940703 Active
Recruiting
Drug: Tepotinib
Drug: Osimertinib
Non-small Cell Lung Cancer EMD Serono Research & Development
Institute, Inc.
September 19, 2019 Phase 2
NCT02864992 Active
Recruiting
Drug: Tepotinib Lung Adenocarcinoma Stage IIIB/IV
Amplification
EMD Serono Research & Development
Institute, Inc.
September 13, 2016 Phase 2
NCT05120960 Recruiting Drug: tepotinib plus osimertinib
Drug: tepotinib
Brain Tumor M.D. Anderson Cancer Center February 27, 2023 Phase 1
NCT04647838 Recruiting Drug: Tepotinib Solid Tumor
MET Amplification
Chungbuk National University
Hospital
January 16, 2020 Phase 2
NCT05782361 Recruiting Drug: Tepotinib
Drug: Pembrolizumab
Non Small Cell Lung Cancer
Advanced Cancer
Institute of Cancer Research,
United Kingdom
May 3, 2023 Phase 1
生物数据图片
  • Tepotinib (EMD 1214063)

    Dose-dependent inhibition of c-Met auto-phosphorylation in vivo. Clin Cancer Res. 2013 Jun 1;19(11):2941-51.

  • Tepotinib (EMD 1214063)

    EMD 1214063 and EMD 1204831 effectively inhibit tumor c-Met auto-phosphorylation and cyclin D1 expression while inducing p27 expression. Clin Cancer Res. 2013 Jun 1;19(11):2941-51.

  • Tepotinib (EMD 1214063)

    EMD 1214063 and EMD 1204831 display antitumor activity in HGF-dependent and HGF-independent xenograft tumor models. Clin Cancer Res. 2013 Jun 1;19(11):2941-51.

相关产品
联系我们