ZANUBRUTINIB

别名: BGB-3111; BGB 3111; Brukinsa; BGB-3111; AG9MHG098Z; Zanubrutinib [INN]; Zanubrutinib [USAN]; BGB3111
目录号: V3979 纯度: ≥98%
Zanubrutinib(原名 BGB-3111)是一种 S-对映体,是一种新型、高选择性的第二代 BTK 抑制剂,目前正在进行血液癌症的临床研究。
ZANUBRUTINIB CAS号: 1691249-45-2
产品类别: Btk
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
2mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of ZANUBRUTINIB:

  • (±)-泽布替尼
  • R-泽布替尼
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Zanubrutinib(原名 BGB-3111)是一种 S-对映体,是一种新型、高选择性、第二代 BTK 抑制剂,目前正在进行血液癌症的临床研究。在生化和细胞测定中,BGB-3111 均表现出纳摩尔级 BTK 抑制活性。在几种 MCL 和 DLBCL 细胞系中,BGB-3111 抑制 BCR 聚集触发的 BTK 自磷酸化,阻断下游 PLC-γ2 信号传导,并有效抑制细胞增殖。与依鲁替尼相比,BGB-3111 对一组激酶(包括 ITK)表现出更受限制的脱靶活性。虽然依鲁替尼显着抑制利妥昔单抗诱导的 NK 细胞 IFN-γ 分泌和对套细胞淋巴瘤细胞的体外细胞毒性,但 BGB-3111 在抑制利妥昔单抗诱导的 ADCC 方面比依鲁替尼弱至少 10 倍,与其弱的 ITK 抑制活性一致。
生物活性&实验参考方法
靶点
BTK/Bruton tyrosine kinase
体外研究 (In Vitro)
在生化和细胞检测中,BGB-3111 对 BTK 与 EGFR、FGR、FRK、HER2、HER4、ITK、JAK3、LCK、BLK 和 TEC 的选择性比依鲁替尼更高[1]。
BGB-3111 有效抑制细胞通过阻断下游 PLC-γ2 信号传导并抑制 BCR 聚集触发的 BTK 自磷酸化来抑制多种 MCL 和 DLBCL 细胞系的增殖 [2]。
体内研究 (In Vivo)
在临床前动物研究中,BGB-3111 表现出比依鲁替尼更好的口服生物利用度,在组织中实现了更高的暴露量和更完全的靶标抑制[1]。
BGB-3111 治疗导致小鼠 BTK 占用测定中出现剂量依赖性 BTK 占用,并且它在靶器官(如脾脏和 PBMC)中的效力约为依鲁替尼的三倍[2]。
BGB-3111 比依鲁替尼表现出更好的疗效,并在 REC-1 MCL 中诱导剂量依赖性抗肿瘤作用和 ABC 亚型 DLBCL (TMD-8) 异种移植模型。根据一项大鼠毒性研究,BGB-3111 具有高度良好的耐受性,即使剂量高达 250 mg/kg/天,也未达到 MTD[3]。
酶活实验
蛋白质沉淀实验程序:[4]
将人BTK蛋白与BGB-3111 (31a, Zanubrutinib)或B43(一种不含反应性化学基团的可逆BTK抑制剂)预孵育,形成BTK/化合物复合物(过量的BTK激酶以确保BTK蛋白完全结合化合物)。将人BTK蛋白变性,离心沉淀。采用LC-MS/MS或HPLC分析上清液中原化合物的含量。在S8前孵育期间,无论BTK蛋白是否存在,B43都保持在上清中,这与BTK结合的可逆性一致(图3B)。相比之下,31a只在不含BTK蛋白的预孵育下从上清中恢复。用BTK预孵育后,31a大部分从上清中消失(图3A),这与31a与BTK蛋白共价/不可逆结合的概念一致,因此用沉淀的BTK蛋白从上清中去除。数据还表明,BTK与31a之间的共价键形成基本在5分钟内完成[4]。
在生化和细胞实验中,BGB-3111显示出纳米级的BTK抑制活性。在一些MCL和DLBCL细胞系中,BGB-3111抑制BCR聚集引发的BTK自磷酸化,阻断下游PLC-γ2信号传导,并有效抑制细胞增殖。与依鲁替尼相比,BGB-3111对一组激酶(包括ITK)显示出更有限的脱靶活性。虽然伊鲁替尼显著抑制利妥昔单抗诱导的NK细胞IFN-γ分泌和对套细胞淋巴瘤细胞的体外细胞毒性,但BGB-3111对利妥昔单抗诱导的ADCC的抑制作用至少弱于伊鲁替尼的10倍,这与其较弱的ITK抑制活性一致。[2]
微粒体内部清除率:[4]
化合物(1µM)以蛋白浓度0.5 mg/mL孵育于肝微粒体中。人分别在反应开始后0、2、6、10、20、30 min,狗、大鼠、小鼠分别在反应开始后0、5、10、20、40、60 min分别以S50终止反应。采用LC-MS/MS对化合物进行分析。化合物剩余百分比的自然对数与孵育时间作了对比。内禀清除率(CLint)由下式计算,其中c蛋白为孵育系统中的微粒体蛋白浓度。CLint = -slope/Cprotein.[4]
细胞色素P450的抑制作用[4]
采用8种CYP探针底物测定混合人肝微粒体的IC50值,并采用LC-MS/MS方法对样品进行分析,评价化合物对人CYP的抑制潜力。不同浓度的化合物与每个探针底物在混合的人肝微粒体中孵育。采用选择性抑制剂作为阳性对照来验证培养系统。监测探针代谢物的形成速率,计算IC50值。
细胞实验
BGB-3111 (31a, Zanubrutinib)的细胞毒性评价(HEK293和Ramos增殖试验):采用celltir - glo荧光细胞活力法测定化合物对HEK293和Ramos的生长抑制活性。96孔板每孔的细胞数量对每个细胞系进行优化,以确保在6天的处理期间呈对数增长(HEK293细胞1000个/孔,Ramos细胞6000个/孔)。细胞用10点稀释系列处理三次。暴露于该化合物6天后,加入体积等于每孔中细胞培养基体积的CellTiter-Glo试剂。混合物在轨道振动器上混合5分钟,使细胞裂解,然后在室温下孵育10分钟,使发光信号形成和稳定,这与ATP的数量相对应,从而与代谢活跃细胞的数量相对应。用PHERAstar FS阅读器测量发光信号。使用GraphPad Prism软件测定细胞活力的IC50值。[4]
动物实验
Pharmacokinetics (PK) study in rats: [4]
Sprague-Dawley rats were housed in temperature (20-25°C) and humidity (40-70%) controlled facility with 12-hour light/dark cycle. The rats were sterilized water. The animals were fasted overnight prior to dosing until 4 hours post dosing. Water was not restricted during the study. Blood samples (0.15 mL) were collected via jugular vein cannula into dry heparinized (coated with 0.25% heparin in saline) tubes. For the IV administered groups, the sampling time points were pre-dose, 5, 15, 30, 45 min, 1, 2, 3, 4 and 6 h post-dose. For the oral administered groups, the sampling time points were pre-dose 15, 30 min, 1, 2, 3, 4, 6, 8, 12, and 24 h post-dose. Plasma samples were separated via centrifugation at 5500 rpm for 10 min, and stored in -30°C freezer until analysis. The plasma samples were analysis using LC-MS/MS with low limit of quantification (LLOQ) at 1 ng/mL. All PK parameters were calculated with non-compartment analysis using Phoenix WinNonlin 6.3.
Plasma protein binding: [4]
The plasma protein binding of compounds was measured using equilibrium dialysis with HTDialysis equilibrium dialysis chamber apparatus. In brief, an aliquot of compounds spiked plasma was added to the donor side of each designated well. An equal volume of phosphate buffer (0.002% Tween 80) was added to the receiver side. The plate was covered with adhesive sealing film to prevent evaporation and placed in a water bath at 37ºC for 5-8 h with a shaking speed at 80 rpm to reach protein binding equilibrium. Samples were taken from both sides, and analyzed using LC-MS/MS. The value of unbound fraction (fu) was determined by dividing the compounds concentration on the buffer side of the equilibrium dialysis chamber by the compounds concentration on the plasma side.[4]
In mouse BTK occupancy assays, treatment with BGB-3111 resulted in a dose-dependent BTK occupancy and showed about 3-fold more potency than ibrutinib in target organs, including PBMC and spleen. BGB-3111 induced dose-dependent anti-tumor effects against REC-1 MCL xenografts engrafted either subcutaneously or systemically via tail vein injection in mice. In the subcutaneous xenografts, BGB-3111 at 2.5 mg/kg BID showed similar activity as ibrutinib at 50 mg/kg QD, its clinical relevant dose. In the systemic model, the median survival of BGB-3111 25 mg/kg BID group was significantly longer than those of both ibrutinib 50 mg/kg QD and BID groups. In an ABC-subtype DLBCL (TMD-8) subcutaneous xenograft model, BGB-3111 also demonstrated better anti-tumor activity than ibrutinib. Preliminary 14-day toxicity study in rats showed that BGB-3111 was very well tolerated and maximal tolerate dose (MTD) was not reached when it was dosed up to 250mg/kg/day.[2]
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Following oral administration of zanubrutinib 160 mg twice daily and 320 mg once daily, the mean (%CV) zanubrutinib steady-state concentrations were 2,295 (37%) ng·h/mL and 2,180 (41%) ng·h/mL, respectively. The mean Cmax (%CV) was 314 (46%) ng/mL following 160 mg twice daily and 543 (51%) ng/mL following 320 mg once daily. The Cmax and AUC of zanubrutinib increase in a dose-proportional manner and there is minimal systemic accumulation after repeated dosing. The median Tmax is 2 hours.
Following oral administration of 320 mg radiolabelled zanubrutinib, approximately 87% of the dose was excreted in the feces and about 8% of the dose was recovered in the urine, where less than 1% of the recovered drug comprised of unchanged parent drug.
The geometric mean (%CV) apparent steady-state Vd is 881 (95%) L. The blood-to­ plasma ratio is about 0.7 to 0.8.
The mean (%CV) apparent oral clearance (CL/F) of zanubrutinib is 182 (37%) L/h.
Metabolism / Metabolites
Zanubrutinib is predominantly metabolized by CYP3A4. Its metabolites have not been characterized.
Biological Half-Life
Following administration of a single oral dose of 160 mg or 320 mg of zanubrutinib, the mean half-life is approximately 2 to 4 hours.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
In the prelicensure clinical trials of zanubrutinib in patients with mantle cell lymphoma, liver test abnormalities were frequent although usually mild. ALT elevations arose in 28% and bilirubin levels in 24% of subjects, but were above 5 times the upper limit of normal (ULN) in less than 1%. In these trials that enrolled over 600 patients, there were no reports of clinically apparent liver injury, early discontinuations because of liver injury or liver related deaths. Nonetheless, other Bruton’s kinase inhibitors (ibrutinib, acalabrutinib) have been associated with rare cases of acute liver injury including acute liver failure. With those agents, the latency to onset of liver injury varied from several weeks to 9 months. The injury was typically hepatocellular and immunologic features were uncommon. While the pattern of injury was hepatocellular, the course was atypical of an acute hepatitis-like injury and more similar to acute hepatic necrosis with early onset of hepatic failure. Other Bruton’s kinase inhibitors have also been linked to several instances of reactivation of hepatitis B that can be severe and has been linked to fatal outcomes.
Likelihood score: E* (unproven but suspected cause of clinically apparent liver injury including reactivation of hepatitis B in susceptible patients).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of zanubrutinib during breastfeeding. Because zanubrutinib is 94% bound to plasma proteins, the amount in milk is likely to be low. The manufacturer recommends that breastfeeding be discontinued during zanubrutinib therapy and for at least 2 weeks after the last dose.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
The plasma protein binding of zanubrutinib is approximately 94%.
参考文献

[1]. Cancer Cell. 2015 Aug 10;28(2):225-39.

[2]. Cancer Res (2015) 75 (15_Supplement): 2597.

[3]. J Hematol Oncol . 2016 Sep 2;9(1):80.

[4]. J Med Chem . 2019 Sep 12;62(17):7923-7940.

其他信息
Pharmacodynamics
Zanubrutinib is an immunomodulating agent that decreases the survival of malignant B cells. It inhibits BTK by binding to its active site. It works to inhibit the proliferation and survival of malignant B cells to reduce the tumour size in mantle cell lymphoma.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C27H29N5O3
分子量
471.56
精确质量
471.227
元素分析
C, 68.77; H, 6.20; N, 14.85; O, 10.18
CAS号
1691249-45-2
相关CAS号
(±)-Zanubrutinib;1633350-06-7;(R)-Zanubrutinib;1691249-44-1;Zanubrutinib-d5
PubChem CID
135565884
外观&性状
White to off-white solid powder
密度
1.3±0.1 g/cm3
沸点
713.4±60.0 °C at 760 mmHg
闪点
385.2±32.9 °C
蒸汽压
0.0±2.3 mmHg at 25°C
折射率
1.680
LogP
3.64
tPSA
103
氢键供体(HBD)数目
2
氢键受体(HBA)数目
5
可旋转键数目(RBC)
6
重原子数目
35
分子复杂度/Complexity
756
定义原子立体中心数目
1
SMILES
O=C(C=C)N1CCC(CC1)[C@]1([H])CCNC2=C(C(N)=O)C(C3C=CC(=CC=3)OC3C=CC=CC=3)=NN12
InChi Key
RNOAOAWBMHREKO-QFIPXVFZSA-N
InChi Code
InChI=1S/C27H29N5O3/c1-2-23(33)31-16-13-18(14-17-31)22-12-15-29-27-24(26(28)34)25(30-32(22)27)19-8-10-21(11-9-19)35-20-6-4-3-5-7-20/h2-11,18,22,29H,1,12-17H2,(H2,28,34)/t22-/m0/s1
化学名
(7S)-2-(4-phenoxyphenyl)-7-(1-prop-2-enoylpiperidin-4-yl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide
别名
BGB-3111; BGB 3111; Brukinsa; BGB-3111; AG9MHG098Z; Zanubrutinib [INN]; Zanubrutinib [USAN]; BGB3111
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ≥ 50 mg/mL
Water: <1 mg/mL
Ethanol: <1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (4.41 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (4.41 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (4.41 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.1206 mL 10.6031 mL 21.2062 mL
5 mM 0.4241 mL 2.1206 mL 4.2412 mL
10 mM 0.2121 mL 1.0603 mL 2.1206 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05356858 Recruiting Drug: zanubrutinib Neuromyelitis Optica Xuanwu Hospital, Beijing May 7, 2022 Phase 2
NCT05199909 Recruiting Drug: zanubrutinib Treatment
Thrombocytopenia
Zhang Lei, MD January 25, 2022 Phase 2
NCT05320575 Recruiting Drug: Zanubrutinib HLH Beijing Friendship Hospital January 26, 2021 Phase 3
NCT06029309 Not yet recruiting Drug: Zanubrutinib
Drug: Tafasitamab
Mantle Cell Lymphoma Alvaro Alencar, MD December 2023 Phase 1
Phase 2
NCT04172246 Active
Recruiting
Drug: Zanubrutinib Mature B-cell Malignancies BeiGene January 29, 2020 Phase 1
Phase 2
生物数据图片
  • Aberrant activation of Bruton’s tyrosine kinase (BTK) plays an important role in pathogenesis of B-cell lymphomas, suggesting that inhibition of BTK is useful in the treatment of hematological malignancies. J Med Chem . 2019 Sep 12;62(17):7923-7940.
相关产品
联系我们