规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
PIM1 (IC50 = 24 μM;(Ki = 0.6 μM); PIM2 (IC50 = 100 μM)
|
||
---|---|---|---|
体外研究 (In Vitro) |
在完整细胞中,SMI-4a 处理(0.5 μM;1 小时;HEK-293T 细胞)可减弱标记 Pim-1 的自身磷酸化 [1]。
本研究旨在探讨SMI - 4a在K562和伊马替尼耐药K562 (K562/G)细胞系中抗肿瘤作用的机制。通过WST‑8实验证明SMI‑4a抑制K562和K562/G细胞的增殖。Annexin V -碘化丙啶实验表明SMI - 4a以剂量和时间依赖的方式诱导K562和K562/G细胞凋亡。采用Hoechst 33342染色法检测细胞凋亡率。克隆形成实验显示SMI‑4a显著抑制K562和K562/G细胞的集落形成能力。Western blot分析表明,SMI - 4a降低了磷酸化的(p) Ser9糖原合成酶激酶(GSK) 3β/pGSK3β,并抑制了β -连环蛋白的易位。此外,凋亡调节因子Bax和聚(ADP核糖)聚合酶- 1下游基因表达上调,凋亡调节因子Bcl - 2和Myc原癌基因蛋白表达下调。免疫荧光结果显示血浆和细胞核中β -连环蛋白的表达水平发生变化。本研究的结果表明,SMI - 4a是一种有效的药物,可与目前的化疗药物联合使用,用于治疗伊马替尼耐药CML。Reference: Mol Med Rep. 2017 Oct;16(4):4603-4612. https://pubmed.ncbi.nlm.nih.gov/28849186/ |
||
体内研究 (In Vivo) |
SMI-4a(60 mg/Kg)每天两次治疗可显着缩小肿瘤大小,并且耐受性良好。最终口服 SMI-4a 后 1 小时收获的肿瘤显示,与用载体处理的小鼠的肿瘤相比,p70 S6K 的磷酸化降低,而相比之下,总 p70 S6K 表达没有变化。
|
||
酶活实验 |
Pim激酶检测[1]
使用多种方法进行Pim蛋白激酶测定,以确保化合物的作用不是由于任何实验伪影。表3所示化合物的初步筛选和评估是使用atp耗尽试验进行的。简单地说,重组人Pim-1以S6激酶/Rsk-2肽2 (KKRNRTLTK)为底物,筛选文库中的100µM化合物,1µM ATP和10 mM MgCl2孵育1小时。激酶反应后,使用kinase - glo荧光素酶试剂盒测定剩余ATP水平。对于需要更高ATP浓度的实验,Pim-1激酶活性是通过一种耦合实验来监测的,其中ADP的产生与丙酮酸激酶和乳酸脱氢酶催化的NADH氧化相耦合。实验在含100 mM NaCl、10 mM MgCl2、2.5 mM磷酸烯醇丙酮酸、0.2 mM NADH、30µg/mL丙酮酸激酶、10µg/mL乳酸脱氢酶、2 mM二硫苏糖醇、25 nM Pim-1、100µM S61肽和不同浓度ATP的20 mM MOPS pH 7中进行。在VersaMax微孔板阅读器中,在25°C下,通过监测NADH氧化在340 nm处的下降来测量活性。反应通过加入ATP(通常为100µM)引发。抑制剂(终值1% DMSO)在加入ATP之前加入。在这两种情况下,IC50值是用GraphPad Prism程序非线性回归确定的。在一些实验中,使用his标记的4E-BP1作为底物来测定Pim-1激酶活性。将活性Pim-1蛋白重悬于激酶反应缓冲液中(10 mM MOPS, pH 7.4, 100µM ATP, 15 mM MgCl2, 1 mM Na3VO4, 1 mM NaF, 1 mM DTT和蛋白酶抑制剂混合物)。每反应30µL,以His-4E-BP1蛋白3µg为底物,加入10 μCi的[γ-32P] ATP。在30°C下搅拌30分钟。然后将样品进行SDS-PAGE扫描,通过放射自显像显示32P标记的4E-BP1。最后,在一些实验中测量了完整细胞中Pim-1的活性。用Flag-Pim-1转染HEK-293T细胞24 h,胰蛋白酶处理后分装于小培养皿中过夜。细胞被洗一次,孵化与不含磷酸盐媒体含有10%不含磷酸盐的边后卫1 h。细胞培养介质中含有50μCi /毫升(32 p)为4 h,正磷酸盐的测试化合物添加最后1 h。免疫沉淀反应Pim-1, anti-Flag M2琼脂糖添加到细胞溶解产物和孵化3 h。部分(10%)的免疫沉淀反应是用于免疫印迹anti-Flag抗体(输入)。其余90%的样品进行SDS-PAGE, 32p标记的Pim-1通过放射自显影显示。 |
||
细胞实验 |
蛋白质印迹分析[1]
细胞类型: HEK-293T 细胞 测试浓度: 0.5 µM 孵育时间: 1 小时 实验结果:引起 Pim-1 诱导的 4E-BP1 磷酸化的剂量依赖性减少,IC50 约为 125 nM。 |
||
动物实验 |
|
||
参考文献 | |||
其他信息 |
The Pim protein kinases are frequently overexpressed in prostate cancer and certain forms of leukemia and lymphoma. 5-(3-Trifluoromethylbenzylidene)thiazolidine-2,4-dione (4a) was identified by screening to be a Pim-1 inhibitor and was found to attenuate the autophosphorylation of tagged Pim-1 in intact cells. Although 4a is a competitive inhibitor with respect to ATP, a screen of approximately 50 diverse protein kinases demonstrated that it has high selectivity for Pim kinases. Computational docking of 4a to Pim-1 provided a model for lead optimization, and a series of substituted thiazolidine-2,4-dione congeners was synthesized. The most potent new compounds exhibited IC(50)s of 13 nM for Pim-1 and 2.3 microM for Pim-2. Additional compounds in the series demonstrated selectivities of more than 2500-fold and 400-fold for Pim-1 or Pim-2, respectively, while other congeners were essentially equally potent toward the two isozymes. Overall, these compounds are new Pim kinase inhibitors that may provide leads to novel anticancer agents.[1]
The development of targeted tyrosine kinase inhibitors (TKIs) has succeeded in altering the course of chronic myeloid leukemia (CML). However, a number of patients have failed to respond or experienced disease relapse following TKI treatment. Proviral integration site for moloney murine leukemia virus‑1 (PIM‑1) is a serine/threonine kinase that participates in regulating apoptosis, cell cycle, signal transduction and transcriptional pathways, which are associated with tumor progression, and poor prognosis. |
分子式 |
C11H6F3NO2S
|
|
---|---|---|
分子量 |
273.23
|
|
精确质量 |
273.007
|
|
元素分析 |
C, 48.36; H, 2.21; F, 20.86; N, 5.13; O, 11.71; S, 11.73
|
|
CAS号 |
438190-29-5
|
|
相关CAS号 |
|
|
PubChem CID |
1361334
|
|
外观&性状 |
White to off-white solid powder
|
|
密度 |
1.5±0.1 g/cm3
|
|
折射率 |
1.602
|
|
LogP |
2.3
|
|
tPSA |
74.96
|
|
氢键供体(HBD)数目 |
1
|
|
氢键受体(HBA)数目 |
6
|
|
可旋转键数目(RBC) |
1
|
|
重原子数目 |
18
|
|
分子复杂度/Complexity |
406
|
|
定义原子立体中心数目 |
0
|
|
SMILES |
S1C(N([H])C(/C/1=C(\[H])/C1C([H])=C([H])C([H])=C(C(F)(F)F)C=1[H])=O)=O
|
|
InChi Key |
NGJLOFCOEOHFKQ-VMPITWQZSA-N
|
|
InChi Code |
InChI=1S/C11H6F3NO2S/c12-11(13,14)7-3-1-2-6(4-7)5-8-9(16)15-10(17)18-8/h1-5H,(H,15,16,17)/b8-5+
|
|
化学名 |
5-(3-(trifluoromethyl)benzylidene)thiazolidine-2,4-dione
|
|
别名 |
TCS PIM-1 4a; SMI-4a; TCS PIM-1 4a; (Z)-SMI-4a; (5Z)-5-[3-(trifluoromethyl)benzylidene]-1,3-thiazolidine-2,4-dione; (Z)-5-(3-(trifluoromethyl)benzylidene)thiazolidine-2,4-dione; CHEMBL183906; SMI4a; SMI 4a
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.6599 mL | 18.2996 mL | 36.5992 mL | |
5 mM | 0.7320 mL | 3.6599 mL | 7.3198 mL | |
10 mM | 0.3660 mL | 1.8300 mL | 3.6599 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
SMI-4a treatment inhibits the phosphorylation of TORC1 substrates.Blood.2010 Jan 28;115(4):824-33. td> |
SMI-4a treatment induces apoptosis in pre–T-LBL.Blood.2010 Jan 28;115(4):824-33. td> |
ERK1/2 phosphorylation is increased by SMI-4a treatment.Blood.2010 Jan 28;115(4):824-33. td> |
The sensitivity of leukemic cell lines to Pim kinase inhibitor SMI-4a.Blood.2010 Jan 28;115(4):824-33. td> |
SMI-4a treatment of pre–T-LBL down-regulates the level of MYC protein.Blood.2010 Jan 28;115(4):824-33. td> |
The in vivo sensitivity of 6812/2 to SMI-4a treatment.Blood.2010 Jan 28;115(4):824-33. td> |