(Z)-Guggulsterone

别名: Z-Guggulsterone; (Z)-Guggulsterone; Z-Guggulsterone; Guggulsterone; 39025-23-5; 95975-55-6; Guggulsterones Z; Cis-Guggulsterone; Guggulsterone E&Z; (Z)-Guggulsterone 香胶甾酮Z; 顺式-固甾酮;固甾酮;没药甾酮Z;香胶甾酮; Guggulsterones E&Z;
目录号: V5032 纯度: ≥98%
(Z)-Guggulsterone 是 Guggulsterone 的顺式异构体,是一种从 guggul 植物 Commiphora mukul 的树脂中分离出来的天然植物类固醇。
(Z)-Guggulsterone CAS号: 39025-23-5
产品类别: VEGFR
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
(Z)-Guggulsterone 是 Guggulsterone 的顺式异构体,是一种从 guggul 植物 Commiphora mukul 的树脂中分离出来的天然植物类固醇。它作为人类法尼醇 X 受体 (FXR) 的拮抗剂。作为印度阿育吠陀药用植物没药 (Commiphora mukul) 的成分,(Z)-Guggulsterone 通过引起细胞凋亡来抑制人类前列腺癌细胞的生长。 Z-guggulsterone 通过抑制 VEGF-VEGF-R2-Akt 信号轴来抑制血管生成。
生物活性&实验参考方法
靶点
VEGF-R2
体外研究 (In Vitro)
在 HUVEC 中,(Z)-GugguLsterone(10、20 μM;24 或 48 小时)可降低 VEGF-R2 蛋白水平 [1]。通过 FXR 介导的 ACE2 调节,(Z)-Guggulsterone (10 μM;24) 可减少初级气道,扰乱类器官中的 ACE2 和 SHP 水平,并减少许多细胞类型中的 SARS-CoV-2 感染 [2]。
z-guggulsterone治疗以浓度和时间依赖的方式抑制人脐静脉内皮细胞(HUVEC)的毛细血管样管形成(体外新生血管形成)以及HUVEC和DU145人前列腺癌症细胞的迁移。guggulsterone的z和E异构体作为HUVEC管形成的抑制剂似乎是等效的[1]。
前期研究发现,z-guggulsterone是印度阿育吠陀药用植物commiora mukul的一种成分,通过引起细胞凋亡抑制人前列腺癌细胞的生长。我们现在报道了一种新的对z-guggulsterone的反应,涉及体外和体内血管生成的抑制。z-谷固酮治疗抑制人脐静脉内皮细胞(HUVEC)的毛细血管样管形成(体外新生血管),并以浓度和时间依赖性方式抑制HUVEC和DU145人前列腺癌细胞的迁移。谷谷固酮的z-和e -异构体似乎具有抑制HUVEC管形成的同等效力。z-guggulsterone介导的体外血管生成抑制与抑制促血管生成生长因子(如血管内皮生长因子(VEGF)和粒细胞集落刺激因子)的分泌、下调VEGF受体2 (VEGF- r2)蛋白水平和Akt失活相关。z-guggulsterone介导的对DU145细胞迁移的抑制通过敲低VEGF-R2蛋白水平而增强。在DU145细胞中,组成活性Akt的异位表达对z-guggulsterone介导的细胞迁移抑制[1]具有保护作用。
体内研究 (In Vivo)
(Z)-Guggulsterone(二氧化硅;1 mg;每周 5 次)可显着降低湿重和肿瘤体积 [1]。
在DU145 Matrigel塞试验中,对雄性裸鼠口服1mg z-guggulsterone/d(五次/周)抑制了体内血管生成,其证据是肿瘤负荷、微血管面积(血管生成标志物因子VIII和CD31染色)和VEGF-R2蛋白表达在统计学上显著降低。总之,本研究表明,z-guggulsterone通过抑制VEGF-VEGF-R2-Akt信号轴来抑制血管生成。总之,我们的研究结果为z-guggulsterone对前列腺癌症的疗效的进一步临床前和临床研究提供了令人信服的理由[1]。
酶活实验
z-guggulsterone介导的体外血管生成抑制与抑制促血管生成生长因子[如血管内皮生长因子(VEGF)和粒细胞集落刺激因子]的分泌、下调VEGF受体2(VEGF-R2)蛋白水平和Akt失活相关。z-guggulsterone介导的对DU145细胞迁移的抑制通过敲低VEGF-R2蛋白水平而增加。DU145细胞中组成型活性Akt的异位表达对z-guggulsterone介导的细胞迁移抑制具有保护作用[3]。
细胞实验
蛋白质印迹分析 [1]
细胞类型:血管内皮生长因子 (VEGF)
测试浓度: 10、20 μM
孵育持续时间:24 或 48 小时
实验结果:导致 HUVEC 中 VEGF-R2 蛋白水平下降。
细胞培养与细胞活力检测 [1]
人脐静脉内皮细胞(HUVEC)购自Clonetics公司,培养于添加5%胎牛血清的内皮细胞生长培养基-2(EGM2 MV SingleQuots)中。DU145细胞单层培养方法如我们先前所述。香胶甾酮各异构体的母液用DMSO配制,并用完全培养基稀释。对照组加入等体积DMSO(终浓度<0.2%)。Z型和E型香胶甾酮对HUVEC活力的影响通过磺酰罗丹明B法测定,方法如我们先前所述。
体外毛细血管样管腔形成与迁移实验 [1]
Z型和E型香胶甾酮对体外血管生成的影响通过管腔形成实验评估,方法如我们先前报道。接种于Matrigel的HUVEC可分化形成毛细血管样管状结构。部分管腔形成实验中,HUVEC在存在或不存在1 μmol/L Akt-1/2抑制剂条件下,暴露于20 μmol/L Z型香胶甾酮处理24小时。采用Transwell Boyden小室(聚碳酸酯滤膜孔径8 μm)评估Z型香胶甾酮对HUVEC或DU145细胞体外迁移的影响,方法如我们先前所述。部分迁移实验中,HUVEC或DU145细胞在存在或不存在1 μmol/L Akt-1/2抑制剂条件下,用20 μmol/L Z型香胶甾酮处理24小时。
免疫印迹分析 [1]
总Akt、磷酸化Akt及VEGF-R2的免疫印迹检测方法如我们先前所述。简言之,用指定浓度Z型香胶甾酮处理HUVEC或DU145细胞特定时间后,收集悬浮与贴壁细胞。细胞裂解液制备方法如前述。裂解蛋白经6%-10% SDS-PAGE分离后转印至聚偏二氟乙烯膜。经一抗和二抗处理后,采用增强化学发光法显色免疫反应条带。剥离印迹膜后用抗肌动蛋白抗体复染以校正上样量差异。通过条带光密度扫描定量蛋白水平变化。每种蛋白的免疫印迹实验均使用独立制备的裂解液重复至少两次。
生长因子、白细胞介素及基质金属蛋白酶分析 [1]
将HUVEC或DU145细胞(2×10⁵个)接种于24孔板,孵育过夜使贴壁。细胞用指定浓度Z型香胶甾酮或DMSO(对照)处理24及48小时后,收集培养上清,采用商品化ELISA试剂盒检测VEGF、EGF、G-CSF、FGF、IL-12、IL-17、MMP-2和MMP-9的分泌水平,方法如我们先前所述。
VEGF-R2的RNA干扰 [1]
采用靶向VEGF-R2的小干扰RNA(siRNA)进行基因沉默。非特异性对照siRNA购自Qiagen公司。转染时,将DU145细胞(5×10⁴个)接种于6孔板过夜贴壁,按制造商推荐方案使用OligofectAMINE转染200 nmol/L对照siRNA或VEGF-R2靶向siRNA。转染24小时后,用DMSO(对照)或20 μmol/L Z型香胶甾酮处理细胞24小时,收集细胞进行迁移实验和免疫印迹分析,方法同前。
组成型活性Akt的异位表达 [1]
采用Fugene 6转染试剂将编码组成型活性Akt-1(Myr-Akt1-HA)的pCMV6载体或空载体瞬时转染DU145细胞。简言之,将DU145细胞以2×10⁵个/mL密度接种于6孔板过夜贴壁,转染组成型活性Akt表达载体或空载体。转染24小时后,用20 μmol/L Z型香胶甾酮或DMSO(对照)处理细胞24小时,检测总Akt/磷酸化Akt水平并进行迁移实验。
‌染色质免疫沉淀(ChIP)实验 [2]‌
每组ChIP实验使用约6×10⁶个细胞。细胞在收集前2小时用含100 μM CDCA(鹅去氧胆酸)、UDCA(熊去氧胆酸)或Z型香胶甾酮(ZGG)的新鲜培养基孵育。使用True Micro ChIP试剂盒按说明书操作:1)预清除后,裂解液与FXR抗体(附表1)或非免疫IgG 4℃孵育过夜;2)通过MicroChip DiaPure柱纯化免疫沉淀DNA;3)采用ΔΔCt法进行qPCR分析(引物序列见附表3)。阳性对照使用FXR靶基因OSTα(即SLC51A)FXRE侧翼引物,阴性对照使用ACE2启动子非FXRE区域引物。结果以非免疫IgG ChIP对照的富集程度进行标准化。
‌荧光素酶报告基因实验 [2]‌
以人类基因组DNA为模板,扩增ACE2基因和SHP基因(即NR0B2)中FXRE IR-1片段,克隆至pGL3-promoter荧光素酶载体。通过定点突变构建ACE2和SHP IR-1突变体(引物序列见附表4)。使用TransIT-293转染试剂将报告基因载体与FXR表达质粒共转染HEK293细胞。转染24小时后,用50 μM CDCA、UDCA或ZGG处理8小时。采用GLO-Luciferase Reporter系统检测荧光素酶活性,结果以空pGL3载体标准化。
‌细胞毒性与活力检测 [2]‌
类器官分别用0.1-100 μM CDCA、UDCA或ZGG处理:1)台盼蓝染色后用Countess II细胞计数仪计数活细胞百分比;2)10 μM处理组采用PrestoBlue刃天青法,使用SpectraMax M2酶标仪(SoftMax Pro 5.4.4软件)检测细胞活力。
‌SARS-CoV-2复制荧光素酶报告系统 [2]‌
构建方法如文献28所述:1)HEK293T报告细胞稳定表达ACE2、海肾荧光素酶(Rluc)和SARS-CoV-2木瓜样蛋白酶激活的环状排列萤火虫荧光素酶(FFluc);2)接种于96孔板后,用不同浓度CDCA、UDCA或ZGG处理,以MOI=0.01感染SARS-CoV-2;3)阳性对照为瑞德西韦(RdRp抑制剂)和REGN-COV2(中和抗体组合);4)24小时后裂解细胞,采用Dual-Glo试剂盒测定FFluc/Rluc活性比,通过GraphPad Prism软件进行4参数logistic曲线拟合分析。
动物实验
Animal/Disease Models: Male nude mice (5-6 weeks old) were subcutaneously (sc) (sc) implanted with Matrigel plugs containing DU145 cells.
Doses: 1 mg.
Route of Administration: po (po (oral gavage)) 5 times a week.
Experimental Results: Resulting in statistically significant tumor volume and wet tumor weight. reduce.
In vivo Matrigel Plug Assay [1]
The effect of z-guggulsterone administration on in vivo angiogenesis was determined by DU145-Matrigel plug assay. Male nude mice (5–6 weeks old) were purchased from Taconic and randomized into two groups of five mice per group. The mice were orally gavaged with 0.1 mL of vehicle (PBS) or 1 mg of z-guggulsterone/mouse in 0.1 mL of PBS (corresponding to ∼40 mg z-guggulsterone/kg body weight) five times per week for 2 weeks prior to Matrigel plug implantation. The Matrigel plugs containing 3 × 106 DU145 cells were implanted s.c. into the flank of each mouse. The z-guggulsterone and vehicle administration was continued for two more weeks. Tumor volume was determined by using a caliper as we have previously described. Body weights of the vehicle-treated control and z-guggulsterone–treated mice were recorded weekly. Mice from each group were also monitored for other symptoms of side effects, including food and water withdrawal and impaired posture or movement. Animals were sacrificed 14 days after Matrigel plug implantation. At the termination of the experiment, the Matrigel plugs from control and z-guggulsterone–treated mice were removed and fixed in 10% neutral-buffered formalin. The fixed Matrigel plugs from control and z-guggulsterone administered mice were dehydrated, embedded in paraffin, and sectioned at 4 μm of thickness. Sections from control and z-guggulsterone administered mice were used for immunohistochemical analysis of CD31, factor VIII, and VEGF-R2. Quantitative image analysis of the microvessel area based on CD31 and factor VIII immunostaining was done using Image Analysis software.
参考文献

[1]. z-Guggulsterone, a constituent of Ayurvedic medicinal plant Commiphora mukul, inhibits angiogenesis in vitro and in vivo. Mol Cancer Ther. 2008 Jan;7(1):171-80.

[2]. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature. 2023 Mar;615(7950):134-142.

其他信息
Guggulsterone is a 3-hydroxy steroid. It has a role as an androgen.
Guggulsterone has been reported in Commiphora mukul and Commiphora wightii with data available.
Our previous studies have shown that z-guggulsterone, a constituent of Indian Ayurvedic medicinal plant Commiphora mukul, inhibits the growth of human prostate cancer cells by causing apoptosis. We now report a novel response to z-guggulsterone involving the inhibition of angiogenesis in vitro and in vivo. The z-guggulsterone treatment inhibited capillary-like tube formation (in vitro neovascularization) by human umbilical vein endothelial cells (HUVEC) and migration by HUVEC and DU145 human prostate cancer cells in a concentration- and time-dependent manner. The z- and E-isomers of guggulsterone seemed equipotent as inhibitors of HUVEC tube formation. The z-guggulsterone-mediated inhibition of angiogenesis in vitro correlated with the suppression of secretion of proangiogenic growth factors [e.g., vascular endothelial growth factor (VEGF) and granulocyte colony-stimulating factor], down-regulation of VEGF receptor 2 (VEGF-R2) protein level, and inactivation of Akt. The z-guggulsterone-mediated suppression of DU145 cell migration was increased by knockdown of VEGF-R2 protein level. Ectopic expression of constitutively active Akt in DU145 cells conferred protection against z-guggulsterone-mediated inhibition of cell migration. Oral gavage of 1 mg z-guggulsterone/d (five times/wk) to male nude mice inhibited in vivo angiogenesis in DU145-Matrigel plug assay as evidenced by a statistically significant decrease in tumor burden, microvessel area (staining for angiogenic markers factor VIII and CD31), and VEGF-R2 protein expression. In conclusion, the present study reveals that z-guggulsterone inhibits angiogenesis by suppressing the VEGF-VEGF-R2-Akt signaling axis. Together, our results provide compelling rationale for further preclinical and clinical investigation of z-guggulsterone for its efficacy against prostate cancer.[1]
Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.[2]
Tumor angiogenesis (neovascularization) is a highly complex process that is regulated by multiple proangiogenic growth factors and their corresponding receptors. Based on the results of the present study, it seems reasonable to conclude that inhibition of the VEGF–VEGF-R2–Akt signaling axis may be an important mechanism in the antiangiogenic effects of z-guggulsterone. This conclusion is supported by the following observations: (a) z-guggulsterone–mediated inhibition of tube formation and migration correlates with the suppression of secretion of VEGF, which provides prosurvival signals to normal and tumor-derived endothelial cells mediated by receptor tyrosine kinase VEGF-R2; (b) z-guggulsterone treatment down-regulates the protein levels of VEGF-R2; (c) z-guggulsterone–mediated suppression of DU145 cell migration is intensified by the knockdown of VEGF-R2 protein levels; (d) z-guggulsterone inhibits Akt in HUVEC and DU145 cells and inhibition of HUVEC tube formation by this agent is intensified by pharmacologic inhibition of Akt. However, the precise mechanism by which z-guggulsterone reduces the secretion of VEGF or down-regulates VEGF-R2 protein level is not clear and requires further investigation. In conclusion, the present study reveals that z-guggulsterone inhibits angiogenesis in vitro and in vivo. The z-guggulsterone–mediated inhibition of angiogenesis is associated with the inactivation of Akt, suppression of growth factor (VEGF and G-CSF), IL-17 and MMP-2 secretion, and down-regulation of VEGF-R2 protein expression.[1]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C21H28O2
分子量
312.45
精确质量
312.208
元素分析
C, 80.73; H, 9.03; O, 10.24
CAS号
39025-23-5
相关CAS号
39025-23-5
PubChem CID
6450278
外观&性状
White to off-white solid powder
密度
1.1±0.1 g/cm3
沸点
463.3±45.0 °C at 760 mmHg
熔点
188-190°
闪点
172.3±25.7 °C
蒸汽压
0.0±1.1 mmHg at 25°C
折射率
1.557
LogP
3.65
tPSA
34.14
氢键供体(HBD)数目
0
氢键受体(HBA)数目
2
可旋转键数目(RBC)
0
重原子数目
23
分子复杂度/Complexity
640
定义原子立体中心数目
5
SMILES
C/C=C/1\C(=O)C[C@H]2[C@@H]3CCC4=CC(=O)CC[C@]4(C)[C@H]3CC[C@]12C
InChi Key
WDXRGPWQVHZTQJ-OSJVMJFVSA-N
InChi Code
InChI=1S/C21H28O2/c1-4-16-19(23)12-18-15-6-5-13-11-14(22)7-9-20(13,2)17(15)8-10-21(16,18)3/h4,11,15,17-18H,5-10,12H2,1-3H3/b16-4+/t15-,17+,18+,20+,21-/m1/s1
化学名
(8R,9S,10R,13S,14S,17Z)-17-ethylidene-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15-decahydrocyclopenta[a]phenanthrene-3,16-dione
别名
Z-Guggulsterone; (Z)-Guggulsterone; Z-Guggulsterone; Guggulsterone; 39025-23-5; 95975-55-6; Guggulsterones Z; Cis-Guggulsterone; Guggulsterone E&Z; (Z)-Guggulsterone
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 5~10 mg/mL (16.0~32.0 mM)
Ethanol: ~2 mg/mL (~6.4 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 1 mg/mL (3.20 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 10.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

配方 2 中的溶解度: 10 mg/mL (32.01 mM) in 50% PEG300 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.2005 mL 16.0026 mL 32.0051 mL
5 mM 0.6401 mL 3.2005 mL 6.4010 mL
10 mM 0.3201 mL 1.6003 mL 3.2005 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
A Study of the Efficacy and Safety of Chemotherapy Combined With Toripalimab in Advanced Biliary Tract Cancer
CTID: NCT03796429
Phase: Phase 2
Status: Completed
Date: 2023-11-29
Neoadjuvant Chemotherapy for Pancreatic Cancer Followed by GS and GnP
CTID: NCT05268692
Phase: Phase 2/Phase 3
Status: Recruiting
Date: 2022-03-07
GS Regimen as the First-line Chemotherapy in Chinese Advanced PC Patients
CTID: NCT03869294
Status: Completed
Date: 2020-03-04
生物数据图片
  • A, structure of z-guggulsterone. Mol Cancer Ther . 2008 Jan;7(1):171-80.
  • A, migration by HUVEC treated for 24 h with DMSO (control) or 20 μmol/L of z-guggulsterone as determined by modified Boyden chamber assay. Mol Cancer Ther . 2008 Jan;7(1):171-80.
  • Effect of oral administration of 1 mg of z-guggulsterone (Monday through Friday) to male nude mice s.c. implanted with DU145 cell–containing Matrigel plugs on tumor volume (A), wet tumor weight (B), and body weight (C). Mol Cancer Ther . 2008 Jan;7(1):171-80.
  • A, representative immunostaining for factor VIII, CD31, and VEGF-R2 in sections of DU145-Matrigel plugs removed from the vehicle-treated control mouse and z-guggulsterone–treated mouse. A, representative immunostaining for factor VIII, CD31, and VEGF-R2 in sections of DU145-Matrigel plugs removed from the vehicle-treated control mouse and z-guggulsterone–treated mouse.
相关产品
联系我们