WZB117

别名: WZB117; WZB117; 1223397-11-2; 3-Fluoro-1,2-phenylene bis(3-hydroxybenzoate); WZB 117; WZB-117; CHEMBL3092944; Benzoic acid, 3-hydroxy-, 1,1'-(3-fluoro-1,2-phenylene) ester; 2-fluoro-6-(3-hydroxybenzoyloxy)phenyl 3-hydroxybenzoate; WZB-117; WZB 117 3-羟基苯甲酸 1,1'-(3-氟-1,2-亚苯基)酯
目录号: V3957 纯度: ≥98%
WZB117 是一种新型有效的葡萄糖转运蛋白 1 (GLUT1) 抑制剂。
WZB117 CAS号: 1223397-11-2
产品类别: GLUT
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
WZB117 是一种新型、有效的葡萄糖转运蛋白 1 (GLUT1) 抑制剂。它不仅抑制癌细胞系的细胞生长,而且抑制裸鼠模型中的癌症生长。每日腹腔注射 10 mg/kg WZB117 可使 A549 细胞来源的人肺癌体积缩小 70% 以上。机制研究表明,WZB117 抑制人红细胞 (RBC) 中的葡萄糖转运,而红细胞将 Glut1 表达为其唯一的葡萄糖转运蛋白。使用 WZB117 处理癌细胞会导致 Glut1 蛋白、细胞内 ATP 和糖酵解酶水平降低。所有这些变化之后,ATP 感应酶 AMP 激活蛋白激酶 (AMPK) 增加,细胞周期蛋白 E2 以及磷酸化视网膜母细胞瘤下降,导致细胞周期停滞、衰老和坏死。添加细胞外 ATP 可以拯救经化合物处理的癌细胞,这表明细胞内 ATP 的减少在该分子的抗癌机制中发挥着重要作用。首次报道了 Glut1 抑制剂处理的癌细胞中的衰老诱导和 ATP 的重要作用。因此,WZB117 是进一步开发针对 Glut1 介导的葡萄糖转运和葡萄糖代谢的抗癌疗法的原型。
生物活性&实验参考方法
靶点
Glucose transporter 1 (Glut1)
体外研究 (In Vitro)
根据葡萄糖摄取测定,WZB117 以剂量依赖性方式减少癌细胞中的葡萄糖转运。该测定在不到一分钟内完成,表明 WZB117 诱导的葡萄糖转运减少可能是快速直接机制的结果。根据细胞活力实验,WZB117 减少癌细胞增殖,IC50 约为 10 μM。克隆实验验证了WZB117对癌细胞发育的抑制作用,并证明了这种抑制的不可逆性。 WZB117疗法对肺癌A549细胞的细胞生长抑制作用远大于对非致瘤性肺NL20细胞的细胞生长抑制作用。 MCF7 乳腺癌细胞和非致瘤性 MCF12A 细胞表现出类似的结果。据报道,与常氧环境相比,当将 WZB117 给予在缺氧环境下培养的癌细胞时,细胞发育受到更大的抑制 [1]。
体内研究 (In Vivo)
根据动物研究,与模拟 (PBS/DMSO) 治疗的肿瘤相比,每日腹膜内注射 10 mg/kg 体重剂量的 WZB117 后,化合物治疗的肿瘤平均大小减少了近 70%。最令人惊讶的是,治疗后,用化合物治疗的 10 个肿瘤中有 2 个停止生长,甚至在试验期间消失。与模拟处理的小鼠相比,WZB117 处理的小鼠体重减轻了 1 至 2 克,其中脂肪组织占体重减轻的大部分。这些发现基于体重的测量和分析。该研究的结论显示,虽然细胞计数保持在正常范围内,但化合物治疗的小鼠的淋巴细胞和血小板计数与载体治疗的小鼠不同。使用葡萄糖转运抑制剂引起了某些担忧,因为接受治疗的小鼠可能会出现高血糖[1]。
酶活实验
蛋白质靶点研究I:红细胞膜囊泡制备和葡萄糖摄取测定[1]
红细胞和红细胞衍生的囊泡是使用已发表的方案进行微小修改制备的。使用密封囊泡的葡萄糖摄取测定与RBC中的类似,不同之处在于在每次洗涤步骤后以18000×g离心20分钟以沉淀囊泡。
蛋白质靶点研究II:对接研究[1]
使用Spartan 10构建WZB117的分子模型(Wavefunction股份有限公司;参考文献23)。在默克分子力场的分子力学能量最小化之后,将化合物结构导出到Macromodel,并对接到Glut1同源性建模的PDB结构1SUK蛋白质和网格制备使用默认方案的FirstDiscovery 2.7的Glide模块进行,并以传输通道的中间为中心,边界框包围整个通道。然后使用Glide对接WZB117,并根据Glide计算的Emodel值选择化合物的最佳对接结构。
蛋白质印迹分析、RNA分离和实时聚合酶链式反应[1]
使用标准方案进行蛋白质印迹分析。Glut1(H-43)、eIF2α和环磷酰胺-阿霉素-长春新碱-泼尼松(CHOP)的抗体来自Santa Cruz;PGAM1抗体来自Novus Biologicals。p-eIF2α抗体来自Invitrogen。
使用RNeasy总RNA提取试剂盒从处理的A549细胞中分离RNA,并使用Bio-Rad iScript Select cDNA合成试剂盒合成cDNA。使用Bio-Rad iCycler和Bio-Rad iQ SyBr Green Supermix试剂盒,使用所产生的cDNA来特异性地定量SLC2A1(Glut1)的转录物。人SLC2A1和β-肌动蛋白的RT2-PCR引物组来自SuperArray。为了量化转录水平,使用了δCt方法。β-肌动蛋白mRNA用作使Glut1 mRNA正常化的内部对照。
乳酸和ATP测量及ATP抢救研究[1]
使用乳酸测定试剂盒II测量细胞外乳酸浓度。 使用来自Perkin-Elmer的ATPlite发光ATP检测测定系统测量细胞内ATP浓度。简言之,将细胞以50000个细胞的密度接种在96孔板的每个孔中。在治疗6、12和24小时后测量ATP水平。测定每个孔中细胞的蛋白质浓度,用于信号归一化的乳酸和ATP测量。 在细胞拯救研究中,在含有或不含有30μmol/L WZB117的96细胞板的癌症细胞的细胞培养基中加入不同浓度的ATP。在处理后24小时通过MTT测定法测量细胞内ATP水平和细胞活力。
细胞实验
癌症细胞和人红细胞葡萄糖摄取测定[1]
如前所述,通过测量2-脱氧-d-[3H]葡萄糖的细胞摄取来分析化合物对葡萄糖转运的抑制活性。
类似的程序用于人红细胞(RBC)的葡萄糖摄取测定,不同之处在于通过以2000×g离心5分钟来洗涤和收集RBC,因为它们是悬浮细胞,并且在测量放射性之前,将处理过的RBC溶解在0.1%SDS中。
细胞增殖(MTT)和克隆形成测定[1]
使用MTT增殖测定试剂盒(Cayman)或克隆原测定法测量细胞增殖和存活率。
缺氧研究[1]
癌症细胞缺氧研究是使用Anaerobe气体生成袋系统和指示剂进行的。该袋形成无氧环境,在该无氧环境中将化合物处理的细胞孵育24小时。缺氧孵育后,通过MTT测定法测量处理的细胞的生存能力。
动物实验
Male NU/J nude mice of 6 to 8 weeks of age were purchased from The Jackson Laboratory and were fed with the Irradiated Teklad Global 19% protein rodent diet from Harlan Laboratories. To determine the in vivo anticancer efficacy of compound WZB117 on human tumor xenograft growth, NSCLC A549 cells in exponential growth phase were harvested, washed, precipitated, and resuspended in PBS. Each mouse was injected subcutaneously with 5 × 106 cancer cells in the flank. Compound treatment started 3 days after the cancer cells injection and when all tumors became palpable. Tumor cell–injected mice were randomly divided into 2 groups: control group (n = 10) treated with PBS/DMSO (1:1, v/v) and WZB117 treatment group (n = 10) treated with WZB117 (10 mg/kg body weight) dissolved in PBS/DMSO solution (1:1, v/v). Mice were given intraperitoneal injection with either PBS/DMSO vehicle or compound WZB117 (10 mg/kg) daily for 10 weeks. Tumor sizes were measured every 7 days with calipers, and tumor volume (L × W2/2) was calculated and presented as means ± SEM. All of the procedures involved in animal study were conducted in conformation with the guidelines of both Ohio University and NIH.[1]
参考文献

[1]. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012 Aug;11(8):1672-82.

其他信息
WZB-117 is a diester resulting from the formal condensation of the two hydroxy groups of 3-fluorocatechol with the carboxy groups of 3-hydroxybenzoic acid. It is an inhibitor of glucose transporter 1 (GLUT1) that suppresses tumour growth in mouse xenograft models. It has a role as an antineoplastic agent, a glucose transporter 1 inhibitor and a radiosensitizing agent. It is a diester, a member of phenols, a benzoate ester and a member of monofluorobenzenes. It is functionally related to a 3-hydroxybenzoic acid and a 3-fluorocatechol.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C20H13FO6
分子量
368.32
精确质量
368.069
元素分析
C, 65.22; H, 3.56; F, 5.16; O, 26.06
CAS号
1223397-11-2
相关CAS号
1223397-11-2
PubChem CID
46830365
外观&性状
Typically exists as white to off-white solids at room temperature
密度
1.4±0.1 g/cm3
沸点
628.4±55.0 °C at 760 mmHg
闪点
333.9±31.5 °C
蒸汽压
0.0±1.9 mmHg at 25°C
折射率
1.645
LogP
4.67
tPSA
93.1
氢键供体(HBD)数目
2
氢键受体(HBA)数目
7
可旋转键数目(RBC)
6
重原子数目
27
分子复杂度/Complexity
527
定义原子立体中心数目
0
SMILES
FC1C=CC=C(C=1OC(C1C=CC=C(C=1)O)=O)OC(C1C=CC=C(C=1)O)=O
InChi Key
FRSWCCBXIHFKKY-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H13FO6/c21-16-8-3-9-17(26-19(24)12-4-1-6-14(22)10-12)18(16)27-20(25)13-5-2-7-15(23)11-13/h1-11,22-23H
化学名
3-Fluoro-1,2-phenylene bis(3-hydroxybenzoate)
别名
WZB117; WZB117; 1223397-11-2; 3-Fluoro-1,2-phenylene bis(3-hydroxybenzoate); WZB 117; WZB-117; CHEMBL3092944; Benzoic acid, 3-hydroxy-, 1,1'-(3-fluoro-1,2-phenylene) ester; 2-fluoro-6-(3-hydroxybenzoyloxy)phenyl 3-hydroxybenzoate; WZB-117; WZB 117
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO:>70 mg/mL
Water:>70 mg/mL
Ethanol:<1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.79 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (6.79 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (6.79 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.7150 mL 13.5752 mL 27.1503 mL
5 mM 0.5430 mL 2.7150 mL 5.4301 mL
10 mM 0.2715 mL 1.3575 mL 2.7150 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • Small-molecule WZB117 and its inhibitory actions on glucose uptake and cancer cell growth. Glucose transport and cell proliferation of WZB117-treated cancer cells was measured by glucose uptake and MTT cell viability assays, respectively. A, structure of WZB117. WZB117 is a structural analogue of WZB115 (21) with a more potent anticancer activity and a molecular weight of 368.31 Da. B, WZB117 inhibits glucose transport in A549 cancer cells in a dose-dependent manner. C, WZB117 rapidly and completely inhibits glucose transport in cancer cells. WZB117 (30 μmol/L) was used to treat A549 cells. Glucose uptake in the treated cells was measured at 0, 1, 5, 30, 60, and 120 minutes after the addition of 2-deoxy-d-[3H] glucose. D, WZB117 treatment led to irreversible cell growth inhibition in 3 cancer cell lines as determined by clonogenic assays. E, WZB117 inhibits cell proliferation in the human lung cancer cell line A549 significantly more than it does in NL20 nontumorigenic lung cells 48 hours after treatment. ***, P ≤ 0.001. F, WZB117 treatment under hypoxic condition further reduced cancer cells' proliferation rate. A549 cells were treated with or without 10 μM WZB117 and were then immediately transferred and maintained in a hypoxic pouch. The viability of the treated cells was measured 24 hours after treatment. A549 cells in normal or low-glucose cell culture media treated under normoxia or hypoxia conditions served as controls. **, P ≤ 0.01. Mol Cancer Ther . 2012 Aug;11(8):1672-82.
  • Small molecule WZB117 inhibits cancer growth in tumor-bearing nude mice. A, daily intraperitoneal injection of WZB117 at 10 mg/kg body weight for 10 weeks resulted in more than 70% reduction in tumor volume of human A549 lung cancer grafted on nude mice. PBS/DMSO (1:1, v/v) were injected in the mock-treated control mice. N = 10 for each treatment group. *, P < 0.05. B, photographs of untreated or WZB117-treated tumor-bearing nude mice with representative tumors. Photographs were taken 8 weeks after the compound treatment. The middle images represent tumors close to the average tumor sizes of the groups. The tumor on the mouse of the WZB117-treated group (bottom right) disappeared during the study. Mol Cancer Ther . 2012 Aug;11(8):1672-82.
  • Glycolysis studies: WZB117 treatment resulted in changes in levels of glycolytic proteins and metabolites and addition of ATP rescued WZB117-treated A549 cells. A549 cells were treated with WZB117 for various times and then mRNA, proteins, and metabolites of the cells were measured. Glucose deprivation samples served as controls. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. Western blot analyses were conducted 3 times. Intensities of protein bands were first normalized with their respective β-actin controls and then further normalized by arbitrarily setting the relative intensity of the mock-treated sample of that time point as 1 in histograms. A, RT-PCR analysis of Glut1 mRNA level. B, Glut1 protein levels of WZB117-treated A549 cells analyzed by Western blotting. C, extracellular lactate levels secreted by A549 cells treated with or without WZB117. Lactate concentration of mock-treated samples was assigned as 100%. D, intracellular ATP levels of cancer cells treated with or without WZB117. Mock-treated and glucose deprivation samples served as negative and positive controls, respectively, and the ATP concentration of mock-treated samples was assigned as 100%. E, addition of extracellular ATP rescued WZB117-treated but not paclitaxel-treated A549 cells. Cells were treated with various concentrations of ATP in the presence of either 30 μmol/L WZB117 or 1 μmol/L paclitaxel for 24 hours, and the cell viability was measured. F, synergistic anticancer effect between WZB117 and a mitochondria inhibitor oligomycin. A549 cells were treated with 1 μmol/L WZB117 in the absence or presence of 50 nmol/L oligomycin. G, glycolytic enzyme changes over time in WZB117-treated A549 cells. This experiment was repeated 3 times. Mol Cancer Ther . 2012 Aug;11(8):1672-82.
相关产品
联系我们