规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
10mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
5g |
|
||
10g |
|
||
Other Sizes |
|
靶点 |
HDAC1 ( IC50 = 10 nM ); HDAC3 ( IC50 = 20 nM ); HDAC2; HDAC7; HDAC11; Autophagy; Mitophagy
|
|
---|---|---|
体外研究 (In Vitro) |
体外活性:Vorinostat 抑制 HDAC1 和 HDAC3 的活性,IC50 分别为 10 nM 和 20 nM。伏立诺他还会导致组蛋白 H4 显着过度乙酰化。 Vorinostat 在微摩尔浓度 (2.5-7.5 μM) 下抑制三种前列腺癌细胞系 LNCaP、PC-3 和 TSU-Pr1 的生长,并诱导 LNCaP 细胞呈剂量依赖性细胞死亡。 Vorinostat 处理 MCF-7 细胞可抑制细胞增殖,IC50 为 0.75 μM,导致细胞积聚在细胞周期的 G1 和 G2-M 期。 Vorinostat 还可诱导雌激素受体阴性细胞系 SKBr-3 和视网膜母细胞瘤阴性细胞系 MDA-468 的分化。 1 μM 伏立诺他治疗 8 小时或更长时间足以不可逆地诱导人多发性骨髓瘤 (MM) 细胞凋亡。伏立诺他处理的 MM 细胞的基因表达谱并不以全局转录激活为标志,而是以基因的特定功能组的协调转录变化为标志,例如细胞因子诱导的增殖/生存信号级联、癌基因-肿瘤抑制基因、细胞凋亡调节因子、DNA合成修复和细胞周期,以及蛋白酶体泛素功能。激酶测定:免疫沉淀-HDAC 测定,将 Jurkat 细胞的裂解物在冰上孵育 1 小时,并在 4 °C 下以 12,000 g 离心 10 分钟进行澄清。上清液用 30 μL 50% 蛋白 G-Sepharose 浆料在 4 °C 下预澄清 1 小时。通过离心沉淀珠子,并将上清液与来自抗 HDAC1 或 HDAC3 多克隆抗血清的 10 μg IgG 级分在 4 °C 下孵育 1 小时(在室温下与同源或异源免疫肽预孵育 2 小时)。两种抗血清都是通过使用与匙孔血蓝蛋白偶联的合成肽在兔子中产生针对 HDAC1 和 HDAC3 羧基末端肽的。添加 30 μL 50% 蛋白 G-Sepharose 浆液,在 4 °C 下反应 1 小时。通过离心沉淀免疫复合物并用 1 mL 裂解缓冲液洗涤 3 次。将珠子重悬于 200 μL HDAC 缓冲液(20 mM Tris-HCl,pH 8.0/150 mM NaCl/10% 甘油)中,并使用对应于组蛋白 H4 氨基酸 1-24 的 3H 乙酰化肽进行 HDAC 测定。通过闪烁计数对释放的[3H]乙酸进行定量。对于抑制研究,将免疫沉淀复合物与不同浓度的伏立诺他在 4 °C 下预孵育 30 分钟。细胞测定:将细胞(LNCaP、PC-3 和 TSU-Pr1)暴露于不同浓度的伏立诺他 1、2、3 和 4 天。通过台盼蓝染料排除来评估细胞活力。
|
|
体内研究 (In Vivo) |
施用伏立诺他(约 100 毫克/公斤/天)可显着抑制裸鼠 CWR22 人前列腺异种移植物的生长,剂量为 25 毫克/公斤/天、50 毫克/天时,肿瘤减少 78%、97% 和 97%。与对照相比,分别为 100 mg/kg/天和 100 mg/kg/天。 Vorinostat 诱导 CWR22 细胞中乙酰化核心组蛋白的积累和前列腺特异性抗原 mRNA 的表达,导致血清前列腺特异性抗原的水平高于仅根据肿瘤体积预测的水平。口服 Vorinostat (0.67g/L) 可穿过血脑屏障,增加大脑中的组蛋白乙酰化,并显着改善亨廷顿病 R6/2 小鼠模型的运动障碍。
|
|
酶活实验 |
将 Jurkat 细胞裂解物用冰处理一小时,然后在 4 °C 下以 12,000 g 离心十分钟以除去任何残留物质。将 30 μL 50% 蛋白 G-Sepharose 浆液添加到上清液中,并在 4 °C 下放置一小时以对其进行预澄清。使用同源或异源免疫肽,通过离心沉淀珠子,然后将上清液与来自抗 HDAC1 或 HDAC3 多克隆抗血清的 10 μg IgG 级分在 4 °C 下孵育 1 小时(在室温下预孵育 2 小时) )。使用与匙孔血蓝蛋白偶联的合成肽,用兔子来产生针对 HDAC1 和 HDAC3 羧基末端肽的抗血清。添加 30 μL 50% 蛋白 G-Sepharose 浆液,在 4°C 下放置半小时。免疫复合物离心后,用1 mL裂解缓冲液洗涤3次。 HDAC 测定中使用对应于组蛋白 H4 氨基酸 1 至 24 的 33H-乙酰化肽,并将珠子重悬于 200 μL HDAC 缓冲液(20 mM Tris-HCl,pH 8.0)中。 /150 mM 氯化钠/10% 甘油)。通过使用闪烁计数,可以测量释放的[3H]乙酸。将不同浓度的伏立诺他与免疫沉淀复合物在 4 °C 下预孵育 30 分钟,以进行抑制研究。
|
|
细胞实验 |
使用 RIPA 缓冲液(25 mM Tris-HCl pH 7.6、150 mM NaCl、1% NP-40、1% 脱氧胆酸钠、0.1% SDS)制备细胞裂解物,并使用 Bio-Rad DC 蛋白测定法测量蛋白质浓度。蛋白质裂解物通过 SDS-PAGE 分离后转移到硝酸纤维素膜上。使用随后的稀释液和抗体:小鼠抗 p21WAF1 (0.5 μg/mL)、兔抗 HDAC1 (1 μg/mL)、兔抗 HDAC2 (1 μg/mL)、兔抗 HDAC3 (9 μg/mL) ) 和兔抗 HDAC7 (3 μg/mL)。二抗采用猪抗兔和兔抗鼠HRP偶联抗体,终浓度为1 μg/mL。所有一抗在洗涤前均在 4°C 下孵育一整晚,二抗在室温下孵育两小时。增强的化学发光测定允许特定蛋白质条带的可视化。为了显示蛋白质样品的均匀加载,在每个蛋白质印迹中都会探测 β-微管蛋白。
|
|
动物实验 |
|
|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
In vitro studies using human liver microsomes indicate negligible biotransformation by cytochromes P450 (CYP). Vorinostat is eliminated predominantly through metabolism with less than 1% of the dose recovered as unchanged drug in urine, indicating that renal excretion does not play a role in the elimination of vorinostat. However, renal excretion does not play a role in the elimination of vorinostat. The pharmacokinetics of vorinostat were evaluated in 23 patients with relapsed or refractory advanced cancer. After oral administration of a single 400-mg dose of vorinostat with a high-fat meal, the mean +/- standard deviation area under the curve (AUC) and peak serum concentration (Cmax) and the median (range) time to maximum concentration (Tmax) were 5.5+/-1.8 uM.hr, 1.2+/-0.62 uM and 4 (2-10) hours, respectively. In the fasted state, oral administration of a single 400-mg dose of vorinostat resulted in a mean AUC and Cmax and median Tmax of 4.2+/-1.9 uM.hr and 1.2+/-0.35 uM and 1.5 (0.5-10) hours, respectively. Therefore, oral administration of vorinostat with a high-fat meal resulted in an increase (33%) in the extent of absorption and a modest decrease in the rate of absorption (Tmax delayed 2.5 hours) compared to the fasted state. However, these small effects are not expected to be clinically meaningful. In clinical trials of patients with CTCL, vorinostat was taken with food. At steady state in the fed-state, oral administration of multiple 400-mg doses of vorinostat resulted in a mean AUC and Cmax and a median Tmax of 6.0+/-2.0 uM.hr, 1.2+/-0.53 uM and 4 (0.5-14) hours, respectively. Vorinostat is approximately 71% bound to human plasma proteins over the range of concentrations of 0.5 to 50 ug/mL. For more Absorption, Distribution and Excretion (Complete) data for Vorinostat (9 total), please visit the HSDB record page. Metabolism / Metabolites The major pathways of vorinostat metabolism involve glucuronidation and hydrolysis followed by β-oxidation. Human serum levels of two metabolites, O-glucuronide of vorinostat and 4-anilino-4-oxobutanoic acid were measured. Both metabolites are pharmacologically inactive. Compared to vorinostat, the mean steady state serum exposures in humans of the O-glucuronide of vorinostat and 4-anilino-4-oxobutanoic acid were 4-fold and 13-fold higher, respectively. In vitro studies using human liver microsomes indicate negligible biotransformation by cytochromes P450 (CYP). Vorinostat is extensively metabolized to inactive metabolites, principally by glucuronidation and hydrolysis followed by beta-oxidation. The drug is not metabolized by cytochrome P-450 (CYP) isoenzymes. The major pathways of vorinostat metabolism involve glucuronidation and hydrolysis followed by beta-oxidation. Human serum levels of two metabolites, O-glucuronide of vorinostat and 4-anilino-4-oxobutanoic acid were measured. Both metabolites are pharmacologically inactive. Compared to vorinostat, the mean steady state serum exposures in humans of the O-glucuronide of vorinostat and 4-anilino-4-oxobutanoic acid were 4-fold and 13-fold higher, respectively. The mean urinary recovery of two pharmacologically inactive metabolites at steady state was 16+/-5.8% of vorinostat dose as the O glucuronide of vorinostat, and 36+/-8.6% of vorinostat dose as 4-anilino-4-oxobutanoic acid. Total urinary recovery of vorinostat and these two metabolites averaged 52+/-13.3% of vorinostat dose. Biological Half-Life 2 hours ... Patients (n = 23) received single doses of 400 mg vorinostat on day 1 (fasted) and day 5 (fed) with 48 hours of pharmacokinetic sampling on both days. Patients received 400 mg vorinostat once daily on days 7 to 28. On day 28, vorinostat was given (fed) with pharmacokinetic sampling for 24 hours after dose. The apparent t(1/2) of vorinostat was short (approximately 1.5 hours). ... The mean terminal half-life was /approximately/ 2.0 hours for both vorinostat and the O-glucuronide metabolite, while that of the 4-anilino-4-oxobutanoic acid metabolite was 11 hours. |
|
毒性/毒理 (Toxicokinetics/TK) |
Hepatotoxicity
In clinical trials of vorinostat in patients with CTCL, the rates of serum enzyme elevations during therapy were rarely mentioned and only occasional episodes of mild elevations were recorded. Minor elevations in serum ALT levels occurred in 15% to 45% of patients, but values above 5 times ULN were rare and there were no reports of hepatitis, jaundice or clinically apparent liver injury among the treated subjects. Vorinostat has had limited clinical use, but there have been no published reports of its association with significant liver injury. Likelihood score: E (unlikely cause of clinically apparent liver injury). Protein Binding 71% |
|
参考文献 |
[1]. Proc Natl Acad Sci U S A . 1998 Mar 17;95(6):3003-7. [2]. Cancer Res . 2000 Sep 15;60(18):5165-70. [3]. Cancer Res . 2001 Dec 1;61(23):8492-7. [4]. Proc Natl Acad Sci U S A . 2003 Feb 18;100(4):2041-6. [5]. Proc Natl Acad Sci U S A . 2004 Jan 13;101(2):540-5. [6]. Clin Cancer Res . 2004 Jun 1;10(11):3839-52. |
|
其他信息 |
Vorinostat is a dicarboxylic acid diamide comprising suberic (octanedioic) acid coupled to aniline and hydroxylamine. A histone deacetylase inhibitor, it is marketed under the name Zolinza for the treatment of cutaneous T cell lymphoma (CTCL). It has a role as an EC 3.5.1.98 (histone deacetylase) inhibitor, an apoptosis inducer and an antineoplastic agent. It is a hydroxamic acid and a dicarboxylic acid diamide. It is functionally related to a suberic acid, a hydroxylamine and an aniline.
Vorinostat is a drug that has been approved by the U.S. Food and Drug Administration (FDA) under the brand name Zolinza for the treatment of a certain type of cancer.Vorinostat is also being studied as an investigational drug as part of a strategy to cure HIV infection.As an investigational HIV drug, vorinostat belongs to a group of drugs called latency-reversing agents. Vorinostat (rINN) or suberoylanilide hydroxamic acid (SAHA), is a drug currently under investigation for the treatment of cutaneous T cell lymphoma (CTCL), a type of skin cancer, to be used when the disease persists, gets worse, or comes back during or after treatment with other medicines. It is the first in a new class of agents known as histone deacetylase inhibitors. A recent study suggested that vorinostat also possesses some activity against recurrent glioblastoma multiforme, resulting in a median overall survival of 5.7 months (compared to 4 - 4.4 months in earlier studies). Further brain tumor trials are planned using combinations of vorinostat with other drugs. Vorinostat is a Histone Deacetylase Inhibitor. The mechanism of action of vorinostat is as a Histone Deacetylase Inhibitor. Vorinostat is an oral histone deacetylase inhibitor and antineoplastic agent that is approved for use in refractory or relapsed cutaneous T cell lymphoma. Vorinostat is associated with modest rate of minor serum enzyme elevations during therapy, but has not been linked to cases of clinically apparent liver injury. Vorinostat has been reported in Humicola fuscoatra and Campanularia with data available. Vorinostat is a synthetic hydroxamic acid derivative with antineoplastic activity. Vorinostat, a second generation polar-planar compound, binds to the catalytic domain of the histone deacetylases (HDACs). This allows the hydroxamic moiety to chelate zinc ion located in the catalytic pockets of HDAC, thereby inhibiting deacetylation and leading to an accumulation of both hyperacetylated histones and transcription factors. Hyperacetylation of histone proteins results in the upregulation of the cyclin-dependant kinase p21, followed by G1 arrest. Hyperacetylation of non-histone proteins such as tumor suppressor p53, alpha tubulin, and heat-shock protein 90 produces additional anti-proliferative effects. This agent also induces apoptosis and sensitizes tumor cells to cell death processes. Vorinostat crosses the blood-brain barrier. A hydroxamic acid and anilide derivative that acts as a HISTONE DEACETYLASE inhibitor. It is used in the treatment of CUTANEOUS T-CELL LYMPHOMA and SEZARY SYNDROME. Drug Indication For the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies. Malignant pleural mesothelioma, Treatment of Cutaneous T-Cell Lymphoma Mechanism of Action Vorinostat inhibits the enzymatic activity of histone deacetylases HDAC1, HDAC2 and HDAC3 (Class I) and HDAC6 (Class II) at nanomolar concentrations (IC50< 86 nM). These enzymes catalyze the removal of acetyl groups from the lysine residues of histones proteins. In some cancer cells, there is an overexpression of HDACs, or an aberrant recruitment of HDACs to oncogenic transcription factors causing hypoacetylation of core nucleosomal histones. By inhibiting histone deacetylase, vorinostat causes the accumulation of acetylated histones and induces cell cycle arrest and/or apoptosis of some transformed cells. The mechanism of the antineoplastic effect of vorinostat has not been fully characterized. Vorinostat, a histone deacetylase inhibitor, is an antineoplastic agent. The mechanism of the antineoplastic effect of vorinostat has not been fully characterized. Vorinostat inhibits the enzymatic activity of histone deacetylases HDAC1, HDAC2, and HDAC3 (Class I) and HDAC6 (Class II) at nanomolar concentrations. HDAC enzymes catalyze the removal of acetyl groups from the lysine residues of proteins, including histones and transcription factors. Overexpression of HDAC enzymes or aberrant recruitment of HDAC enzymes to oncogenic transcription factors causing hypoacetylation of core nucleosomal histones has been observed in some cancer cells. Hypoacetylation of histones is associated with a condensed chromatin structure and repression of gene transcription. Inhibition of HDAC activity allows for the accumulation of acetyl groups on the histone lysine residues, resulting in an open chromatin structure and transcriptional activation. In vitro, vorinostat causes the accumulation of acetylated histones and induces cell cycle arrest and/or apoptosis of some transformed cells. Although the pathophysiological processes involved in dopamine (DA) neuron degeneration in Parkinson's disease (PD) are not completely known, apoptotic cell death has been suggested to be involved and can be modeled in DAergic cell lines using the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)). Recently, it has been suggested that histone deacetylase inhibitors (HDACIs) may reduce apoptotic cell death in various model systems. However, their utility in interfering with DA cell death remains unclear. The HDACIs sodium butyrate (NaB), valproate (VPA) and suberoylanilide hydroxamic acid (SAHA) were tested for their ability to prevent MPP(+)-mediated cytotoxicity in human derived SK-N-SH and rat derived MES 23.5 cells. All three HDACIs at least partially prevented MPP(+)-mediated apoptotic cell death. The protective effects of these HDACIs coincided with significant increases in histone acetylation. These results suggest that HDACIs may be potentially neuroprotective against DA cell death ... Histone deacetylase inhibitors (HDACi) developed as anti-cancer agents have a high degree of selectivity for killing cancer cells. HDACi induce acetylation of histones and nonhistone proteins, which affect gene expression, cell cycle progression, cell migration, and cell death. The mechanism of the tumor selective action of HDACi is unclear. Here, /the authors/ show that the HDACi, vorinostat (Suberoylanilide hydroxamic acid, SAHA), induces DNA double-strand breaks (DSBs) in normal (HFS) and cancer (LNCaP, A549) cells. Normal cells in contrast to cancer cells repair the DSBs despite continued culture with vorinostat. In transformed cells, phosphorylated H2AX (gammaH2AX), a marker of DNA DSBs, levels increased with continued culture with vorinostat, whereas in normal cells, this marker decreased with time. Vorinostat induced the accumulation of acetylated histones within 30 min, which could alter chromatin structure-exposing DNA to damage. After a 24-hr culture of cells with vorinostat, and reculture without the HDACi, gammaH2AX was undetectable by 2 hr in normal cells, while persisting in transformed cells for the duration of culture. Further, /investigators/ found that vorinostat suppressed DNA DSB repair proteins, e.g., RAD50, MRE11, in cancer but not normal cells. Thus, the HDACi, vorinostat, induces DNA damage which normal but not cancer cells can repair. This DNA damage is associated with cancer cell death. These findings can explain, in part, the selectivity of vorinostat in causing cancer cell death at concentrations that cause little or no normal cell death. ... Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, /the authors/ found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency. For more Mechanism of Action (Complete) data for Vorinostat (23 total), please visit the HSDB record page. |
分子式 |
C14H20N2O3
|
|
---|---|---|
分子量 |
264.3
|
|
精确质量 |
264.147
|
|
元素分析 |
C, 63.62; H, 7.63; N, 10.60; O, 18.16
|
|
CAS号 |
149647-78-9
|
|
相关CAS号 |
|
|
PubChem CID |
5311
|
|
外观&性状 |
White to off-white solid powder
|
|
密度 |
1.2±0.1 g/cm3
|
|
熔点 |
161-162°C
|
|
折射率 |
1.567
|
|
LogP |
0.86
|
|
tPSA |
78.43
|
|
氢键供体(HBD)数目 |
3
|
|
氢键受体(HBA)数目 |
3
|
|
可旋转键数目(RBC) |
8
|
|
重原子数目 |
19
|
|
分子复杂度/Complexity |
276
|
|
定义原子立体中心数目 |
0
|
|
SMILES |
O=C(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(N([H])O[H])=O)N([H])C1C([H])=C([H])C([H])=C([H])C=1[H]
|
|
InChi Key |
WAEXFXRVDQXREF-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C14H20N2O3/c17-13(15-12-8-4-3-5-9-12)10-6-1-2-7-11-14(18)16-19/h3-5,8-9,19H,1-2,6-7,10-11H2,(H,15,17)(H,16,18)
|
|
化学名 |
N'-hydroxy-N-phenyloctanediamide
|
|
别名 |
MK0683; SAHA; M344; CCRIS 8456; CCRIS8456; CCRIS-8456; HSDB 7930; Vorinostat; suberoylanilide hydroxamic acid; MK-0683; MK 0683; MK0683; M344; HSDB 7930; suberoylanilide hydroxamic acid; Zolinza; N-hydroxy-N'-phenyloctanediamide; N1-hydroxy-N8-phenyloctanediamide; Suberanilohydroxamic acid; Trade name: Zolinza
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (9.46 mM) (饱和度未知) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (9.46 mM) (饱和度未知) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (7.87 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: ≥ 2.08 mg/mL (7.87 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清的DMSO储备液加入400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 5 中的溶解度: ≥ 2.08 mg/mL (7.87 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将100μL 20.8mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 6 中的溶解度: ≥ 2.08 mg/mL (7.87 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,将100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 7 中的溶解度: ≥ 2.08 mg/mL (7.87 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,要配制1 mL工作液,可将100 μL 20.8 mg/mL 澄清DMSO 储备液加入900 μL 玉米油中,混匀。 配方 8 中的溶解度: ≥ 2.08 mg/mL (7.87 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,要配制1 mL工作液,可将100 μL 20.8 mg/mL 澄清DMSO 储备液加入900 μL 玉米油中,混匀。 配方 9 中的溶解度: 2% DMSO+30% PEG 300+ddH2O: 5mg/mL 配方 10 中的溶解度: 3.33 mg/mL (12.60 mM) in 20% HP-β-CD in Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶. *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.7836 mL | 18.9179 mL | 37.8358 mL | |
5 mM | 0.7567 mL | 3.7836 mL | 7.5672 mL | |
10 mM | 0.3784 mL | 1.8918 mL | 3.7836 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT01236560 | Active Recruiting |
Drug: Vorinostat Drug: Temozolomide |
Brain Stem Glioma Cerebral Astrocytoma |
National Cancer Institute (NCI) |
November 15, 2010 | Phase 2 Phase 3 |
NCT01281176 | Active Recruiting |
Drug: Vorinostat Drug: Carboplatin |
Adult Solid Neoplasm | National Cancer Institute (NCI) |
February 9, 2011 | Phase 1 |
NCT02638090 | Active Recruiting |
Drug: Vorinostat Drug: Pembrolizumab |
Non-small Cell Lung Cancer Lung Cancer |
H. Lee Moffitt Cancer Center and Research Institute |
March 22, 2016 | Phase 1 Phase 2 |
NCT00268385 | Active Recruiting |
Drug: Vorinostat Drug: Temozolomide |
Adult Glioblastoma Adult Gliosarcoma |
National Cancer Institute (NCI) |
December 16, 2005 | Phase 1 |
NCT02737046 | Active Recruiting |
Drug: Vorinostat Drug: Sargramostim |
Neuroblastoma | New Approaches to Neuroblastoma Therapy Consortium |
September 12, 2018 | Phase 1 |