VBIT-4

别名: VBIT-4; VBIT4; N-(4-chlorophenyl)-4-hydroxy-3-[4-[4-(trifluoromethoxy)phenyl]piperazin-1-yl]butanamide; N-(4-chlorophenyl)-4-hydroxy-3-(4-(4-(trifluoromethoxy)phenyl)piperazin-1-yl)butanamide; N-(4-chlorophenyl)-4-hydroxy-3-{4-[4-(trifluoromethoxy)phenyl]piperazin-1-yl}butanamide; SCHEMBL18641899; QYSQXVAEFPWMEM-UHFFFAOYSA-N; EX-A5330; VBIT 4 电压依赖性阴离子通道 (VDAC1) 低聚物抑制剂
目录号: V2258 纯度: ≥98%
VBIT-4 是一种新型、有效的 VDAC1(电压依赖性阴离子通道 1)抑制剂,VDAC1 是线粒体外膜蛋白,也是多种细胞生存和死亡信号(包括细胞凋亡)的汇聚点。
VBIT-4 CAS号: 2086257-77-2
产品类别: VDAC
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
2mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
顾客使用InvivoChem 产品VBIT-4发表3篇科研文献
纯度/质量控制文件

纯度: ≥98%

纯度: ≥98%

产品描述
VBIT-4 是一种新型、有效的 VDAC1(电压依赖性阴离子通道 1)抑制剂,VDAC1 是线粒体外膜蛋白,也是多种细胞生存和死亡信号(包括细胞凋亡)的汇聚点。 VBIT-4降低系统性红斑狼疮小鼠模型中mtDNA释放、IFN信号传导、中性粒细胞外陷阱和疾病严重程度。使用MST方法分析VBIT-4与重组纯化的VDAC1、VDAC2和VDAC3的相互作用。VBIT-4以相似的结合亲和力与三种重组亚型结合,尽管比从大鼠肝线粒体纯化的VDAC1低3倍。VDAC1是大多数细胞类型中的主要亚型,并且没有VDAC2或VDAC3低聚的报道,可以合理地假设VBIT-4的抗凋亡作用主要通过其与VDAC1的相互作用介导。 VBIT-4 提供了一种治疗与细胞凋亡增强相关的不同疾病的治疗策略,并指出 VDAC1 作为治疗干预的一个有希望的靶点。
生物活性&实验参考方法
靶点
VDAC, mtDNA release, IFN signaling, neutrophil extracellular traps
体外研究 (In Vitro)
使用MST方法分析VBIT-4与重组纯化的VDAC1、VDAC2和VDAC3的相互作用。VBIT-4以相似的结合亲和力与三种重组亚型结合,尽管比从大鼠肝线粒体纯化的VDAC1低3倍。[1]
体内研究 (In Vivo)
VDAC寡聚化抑制剂VBIT-4在系统性红斑狼疮小鼠模型中降低mtDNA释放、IFN信号传导、中性粒细胞外陷阱和疾病严重程度。因此,VDAC低聚抑制是一种潜在的治疗与mtDNA释放相关疾病的方法
VBIT-4可改善MpJ Faslpr小鼠的狼疮样症状。VBIT-4阻断了皮肤病变的发展和伴随白细胞浸润的表皮增厚,并在不影响死亡率或体重的情况下抑制了面部和背部脱发。VBIT-4还降低了脾脏和淋巴结重量。[2]
酶活实验
鉴定VDAC1低聚抑制剂的高通量筛选使用96孔形式的细胞进行筛选,以增强BRET2信号,从而鉴定VDAC1-低聚抑制剂。转染具有低VDAC1水平的T-REx细胞以表达rVDAC1-GFP2和rVDAC1 Rluc,并以9000个细胞/孔的密度接种在96孔板中。将化合物(1μl的2mm储备溶液)添加到100μl中的最终浓度为10μm(1%的DMSO最终浓度)。将细胞与NCI化合物预孵育1小时,然后与凋亡诱导剂再孵育3小时(STS,1μm;亚硒酸盐,30μm;As2O3,60μm)。通过机器人系统将测试的NCI化合物分配到96孔板中。处理后,除去培养基,并如上所述测定BRET2信号。液体处理是用Tecan(Männedorf,Switzerland)Freedom 150 Robotic&MCA液体处理系统完成的,尽管荧光素酶发光和荧光读数是通过机器人集成的Tecan Infinite M1000阅读器获得的。[1]
细胞实验
交联实验PBS中的细胞(2.5–3 mg/ml)在适当处理后收获,并与交联试剂EGS(pH 8.3)孵育15分钟。使用抗VDAC1抗体对样品(60–80μg蛋白质)进行SDS-PAGE和免疫印迹。使用FUSION-FX对免疫反应性VDAC1二聚体、三聚体和多聚体带进行定量分析。[1]
动物实验
Animal model of SLE (systemic lupus erythematosus)
Formulation: VBIT-4 was freshly dissolved in DMSO and diluted in water (final pH 5.0, DMSO 0.05%).
Doses: 20 mg/kg
Administration route: taken with drinking water
Animal model of SLE (systemic lupus erythematosus). All experiments were approved by the ACUC (Animal Care and Use Committee) of the NIH/NHLBI. Female MRL/MpJ-Faslpr/J mice (stock #000485) were used as a model to determine the etiology of systemic lupus erythematosus (SLE). MRL/MpJ mice were used as a control for MRL/MpJ-Faslpr/J mice. All mice were purchased from The Jackson Laboratory. VBIT-4 was freshly dissolved in DMSO and diluted in water (final pH 5.0, DMSO 0.05%). The MRL/MpJ-Faslpr/J mice were treated with a daily freshly diluted dose of VBIT-4 (20 mg/kg) or vehicle water (final pH 5.0, DMSO 0.05%) in drinking water for 5 w, beginning at 11 w of age until euthanasia at 16 w of age. Blood and urine samples were collected when the mice were 16 w of age. Body weight were measured before and after VBIT-4 administration (11 and 16 w of age respectively). Skin, kidney, thymus, and lymph nodes were also collected.[2]
参考文献

[1] Novel Compounds Targeting the Mitochondrial Protein VDAC1 Inhibit Apoptosis and Protect against Mitochondrial Dysfunction. J Biol Chem. 2016 Nov 25;291(48):24986-25003. doi: 10.1074/jbc.M116.744284. Epub 2016 Oct 13.\nPMID: 27738100;

[2] Science. 2019 Dec 20;366(6472):1531-1536. doi: 10.1126/science.aav4011. Epub 2019 Dec 19.\nPMID: 31857488

[3] Sci Rep. 2020 Dec 16;10(1):22101. doi: 10.1038/s41598-020-79056-w.PMID: 33328613

其他信息
Apoptosis is thought to play a critical role in several pathological processes, such as neurodegenerative diseases (i.e. Parkinson's and Alzheimer's diseases) and various cardiovascular diseases. Despite the fact that apoptotic mechanisms are well defined, there is still no substantial therapeutic strategy to stop or even slow this process. Thus, there is an unmet need for therapeutic agents that are able to block or slow apoptosis in neurodegenerative and cardiovascular diseases. The outer mitochondrial membrane protein voltage-dependent anion channel 1 (VDAC1) is a convergence point for a variety of cell survival and death signals, including apoptosis. Recently, we demonstrated that VDAC1 oligomerization is involved in mitochondrion-mediated apoptosis. Thus, VDAC1 oligomerization represents a prime target for agents designed to modulate apoptosis. Here, high-throughput compound screening and medicinal chemistry were employed to develop compounds that directly interact with VDAC1 and prevent VDAC1 oligomerization, concomitant with an inhibition of apoptosis as induced by various means and in various cell lines. The compounds protected against apoptosis-associated mitochondrial dysfunction, restoring dissipated mitochondrial membrane potential, and thus cell energy and metabolism, decreasing reactive oxidative species production, and preventing detachment of hexokinase bound to mitochondria and disruption of intracellular Ca2+ levels. Thus, this study describes novel drug candidates with a defined mechanism of action that involves inhibition of VDAC1 oligomerization, apoptosis, and mitochondrial dysfunction. The compounds VBIT-3 and VBIT-4 offer a therapeutic strategy for treating different diseases associated with enhanced apoptosis and point to VDAC1 as a promising target for therapeutic intervention.[1]
Mitochondrial stress releases mitochondrial DNA (mtDNA) into the cytosol, thereby triggering the type Ι interferon (IFN) response. Mitochondrial outer membrane permeabilization, which is required for mtDNA release, has been extensively studied in apoptotic cells, but little is known about its role in live cells. We found that oxidatively stressed mitochondria release short mtDNA fragments via pores formed by the voltage-dependent anion channel (VDAC) oligomers in the mitochondrial outer membrane. Furthermore, the positively charged residues in the N-terminal domain of VDAC1 interact with mtDNA, promoting VDAC1 oligomerization. The VDAC oligomerization inhibitor VBIT-4 decreases mtDNA release, IFN signaling, neutrophil extracellular traps, and disease severity in a mouse model of systemic lupus erythematosus. Thus, inhibiting VDAC oligomerization is a potential therapeutic approach for diseases associated with mtDNA release.[2]
The voltage-dependent anion channel 1 (VDAC1) is a key player in mitochondrial function. VDAC1 serves as a gatekeeper mediating the fluxes of ions, nucleotides, and other metabolites across the outer mitochondrial membrane, as well as the release of apoptogenic proteins initiating apoptotic cell death. VBIT-4, a VDAC1 oligomerization inhibitor, was recently shown to prevent mitochondrial dysfunction and apoptosis, as validated in mouse models of lupus and type-2 diabetes. In the present study, we explored the expression of VDAC1 in the diseased myocardium of humans and rats. In addition, we evaluated the effect of VBIT-4 treatment on the atrial structural and electrical remodeling of rats exposed to excessive aldosterone levels. Immunohistochemical analysis of commercially available human cardiac tissues revealed marked overexpression of VDAC1 in post-myocardial infarction patients, as well as in patients with chronic ventricular dilatation\dysfunction. In agreement, rats exposed to myocardial infarction or to excessive aldosterone had a marked increase of VDAC1 in both ventricular and atrial tissues. Immunofluorescence staining indicated a punctuated appearance typical for mitochondrial-localized VDAC1. Finally, VBIT-4 treatment attenuated the atrial fibrotic load of rats exposed to excessive aldosterone without a notable effect on the susceptibility to atrial fibrillation episodes induced by burst pacing. Our results indicate that VDAC1 overexpression is associated with myocardial abnormalities in common pathological settings. Our data also indicate that inhibition of the VDAC1 can reduce excessive fibrosis in the atrial myocardium, a finding which may have important therapeutic implications. The exact mechanism\s of this beneficial effect need further studies.[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C21H23CLF3N3O3
分子量
457.8738
精确质量
457.138
元素分析
C, 55.09; H, 5.06; Cl, 7.74; F, 12.45; N, 9.18; O, 10.48
CAS号
2086257-77-2
相关CAS号
2086257-77-2 (racemate);2086268-69-9 (R-isoemr);2086269-51-2 (S-isomer);
PubChem CID
126697666
外观&性状
Light yellow to yellow solid powder
LogP
3.9
tPSA
65Ų
氢键供体(HBD)数目
2
氢键受体(HBA)数目
8
可旋转键数目(RBC)
7
重原子数目
31
分子复杂度/Complexity
560
定义原子立体中心数目
0
InChi Key
QYSQXVAEFPWMEM-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H23ClF3N3O3/c22-15-1-3-16(4-2-15)26-20(30)13-18(14-29)28-11-9-27(10-12-28)17-5-7-19(8-6-17)31-21(23,24)25/h1-8,18,29H,9-14H2,(H,26,30)
化学名
N-(4-chlorophenyl)-4-hydroxy-3-(4-(4-(trifluoromethoxy)phenyl)piperazin-1-yl)butanamide
别名
VBIT-4; VBIT4; N-(4-chlorophenyl)-4-hydroxy-3-[4-[4-(trifluoromethoxy)phenyl]piperazin-1-yl]butanamide; N-(4-chlorophenyl)-4-hydroxy-3-(4-(4-(trifluoromethoxy)phenyl)piperazin-1-yl)butanamide; N-(4-chlorophenyl)-4-hydroxy-3-{4-[4-(trifluoromethoxy)phenyl]piperazin-1-yl}butanamide; SCHEMBL18641899; QYSQXVAEFPWMEM-UHFFFAOYSA-N; EX-A5330; VBIT 4
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : 90 mg/mL (~200 mM)
Ethanol : 40-90 mg/mL
Water : < 1 mg/mL (Insoluble)
溶解度 (体内实验)
~4.5 mg/ml (9.8 mM) in 5% DMSO: 40% PEG300: 5% Tween 80: 50% ddH2O 请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.1840 mL 10.9201 mL 21.8403 mL
5 mM 0.4368 mL 2.1840 mL 4.3681 mL
10 mM 0.2184 mL 1.0920 mL 2.1840 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们