规格 | 价格 | 库存 | 数量 |
---|---|---|---|
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
DPP-4 (IC50 = 4 nM)
|
---|---|
体外研究 (In Vitro) |
体外活性:曲格列汀(也称为 SYR-472)是武田正在开发的一种有效、高选择性、长效的 DPP-4(二肽基肽酶-4)抑制剂,用于治疗 2 型糖尿病 (T2D)。 -每周曲格列汀治疗对 2 型糖尿病患者的血糖控制产生了临床和统计学上的显着改善。它具有良好的耐受性,可能成为这种疾病患者的一种新的治疗选择。曲格列汀在日本被批准用于治疗 2 型糖尿病 (T2DM)。
|
体内研究 (In Vivo) |
曲格列汀通过抑制 DPP-4 活性来改善血糖控制。
|
酶活实验 |
酶抑制试验[2]
这些研究中使用的人DPP-4酶来自几个来源。如前所述,使用从ATCC(ATCC编号HTB-37;www.ATCC.org)购买的Caco-2细胞部分纯化的人DPP-4来确认trelagliptin抑制剂的效力。为了比较DPP-4抑制剂,trelagliptin、阿格列汀和西格列汀,使用市售重组人DPP-4(台湾Abnova)。为了进行详细的动力学研究,如前所述克隆、表达和纯化重组人DPP-4。此外,使用人、狗和大鼠的血浆样本测定了血浆DPP-4活性的抑制作用。根据之前报道的方法,DPP-4相关蛋白酶,二肽基肽酶-2(DPP-2)和脯氨酰内肽酶(PEP)分别从大鼠肾脏和脑中制备。通过亲和层析从表达每种FLAG标记蛋白的293-F细胞中纯化人二肽基肽酶-8(DPP-8)、二肽基多肽酶-9(DPP-9)和成纤维细胞活化蛋白α(FAPα)。[2] 为了进行详细的动力学研究,使用GP pNA作为底物,并在室温下在pH 7.4的缓冲液中进行测定,该缓冲液含有20 mmol/L HEPES、20 mmol/L MgCl2、0.1 mg/ml牛血清白蛋白和1%(v/v)DMSO。在大多数情况下,最后加入DPP-4酶(终浓度为1 nmol/L)以启动酶反应,但在测量预先形成的DPP-4抑制剂复合物中DPP-4酶活性的恢复时除外,在这种情况下,酶首先与trelagliptin预孵育70分钟,然后通过稀释50倍到含有大量过量(2 mmol/L,约17xKm)GP pNA底物的反应缓冲液中来启动反应。所有测定均以96孔格式重复进行,总测定体积为200uL,每10秒测量405nm处的吸光度,以确定反应时间过程。在大多数情况下,整个反应过程曲线如下所述进行分析。然而,对于通过trelagliptin建立GP pNA底物竞争性抑制的初始速率研究,仅使用了前40秒的吸光度测量值。 SD大鼠的体外生物测定、晶体结构测定和药代动力学测定[3] 体外DPP-4抑制研究(至少三个独立实验)、使用表面等离子体共振的结合动力学研究、DPP-4与化合物5的共结晶以及结构测定,以及SD大鼠的药代动力学测定,都是使用我们之前工作中报告的相同操作方法进行的。 |
细胞实验 |
使用发色底物Gly-Pro-p-硝基苯胺(GP pNA)(终浓度为0.5 mmol/L)测定Caco-2细胞或血浆中的DPP-4活性,并在pH 7.5的缓冲液中进行,该缓冲液含有100 mmol/L Tris-HCl、1 mg/mL牛血清白蛋白和0.5 mg/mL CHAPS(3-[(3-甲酰氨基丙基)二甲基铵]-1-丙磺酸),在37°C(Caco-2电池的DPP-4组分)或30°C(血浆)下进行60分钟。测量405nm处的吸光度变化以确定反应速率。使用荧光底物Gly-Pro-7-氨基-4-甲基香豆素(GP-AMC)(终浓度90μmol/L)测定重组人DPP-4活性,并在含有25 mmol/L HEPES、140 mmol/L NaCl、1 mg/mL牛血清白蛋白的pH 7.8缓冲液中在37°C下进行15分钟。通过加入100μL 25%(v/v)乙酸停止反应,并使用Envision 2103 Multilabel Reader测量荧光(380 nm激发/460 nm发射)。表1中描述了测量DPP-2、DPP-8、DPP-9、PEP和FAPα活性的反应条件。测量405nm处的吸光度变化以确定反应速率[2]。
|
动物实验 |
ICR ob/ob mice[3]
10 mg/kg Oral gavage; 10 mg/kg; once a week; 8 weeks Effect on DPP-4 Activity in ob/ob Mice[3] Eight-week-old ob/ob mice (n = 10 in each group, 5 male and 5 female) were randomly assigned to treatment groups. After 2 h of fasting, baseline blood was collected into a tube containing EDTA. Mice were then treated orally with vehicle (0.5% sodium carboxymethyl cellulose, 10 mL/kg), compound 5 (0.3, 1, 3, 1, and 10 mg/kg), omarigliptin (3 mg/kg), or trelagliptin (3 mg/kg). Subsequently, blood per animal was collected at 1, 2, 4, 8, 12, 24, 48, 72, 96, 120, 144, and 168 h. All samples were centrifuged at 10 000 rpm for 2 min, and the plasma was harvested. Aliquots of plasma samples were stored at −80 °C until analysis. The measurement of in vivo DPP-4 activity was the same as the method with ICR mice. Effect on OGTT in db/db Mice[3] To examine the effect of compound 5 on blood glucose after an oral glucose challenge in 6 week old db/db mice (n = 10 in each group, 5 male and 5 female), compound 5 (3 and 10 mg/kg), omarigliptin (10 mg/kg), trelagliptin (10 mg/kg), or vehicle (0.5% sodium carboxymethyl cellulose) was orally administered to 6 h-fasted db/db mice 60 min prior to the oral glucose challenge (1.5 g/kg). Blood glucose was estimated using a glucometer at 60 min before the glucose load and 0, 15, 30, 60, 90, and 120 min post-glucose challenge. The AUC for the glucose tolerance test was calculated using the trapezoidal method. Long-Term Antidiabetic Effects in db/db Mice[3] Six-week-old db/db mice were divided into 5 groups (n = 10 in each group, 5 male and 5 female) based on nonfasting blood glucose and 6 h FBG, serum insulin levels, PBW (non-FBW), and 6 h FBW. Lean littermates were used as the lean control. Compound 5 (3 and 10 mg/kg), omarigliptin (10 mg/kg), trelagliptin (10 mg/kg), or vehicle (0.5% sodium carboxymethyl cellulose) was orally administered once weekly for 8 weeks. Nonfasting glucose and FBG, PBW, and 6 h FBW were determined at 7 d intervals. After 7 weeks of treatment, the 6 h-fasted animal was challenged by 1.5 g/kg glucose. Blood glucose was estimated using a glucometer at 0, 15, 30, 60, 90, and 120 min post-glucose challenge. After 8 weeks of treatment, the 6 h-fasted animal was challenged by 1.5 g/kg glucose. Blood samples were collected at 0, 15, 30, and 60 min post-glucose challenge to test plasma insulin levels. After 8 weeks of treatment, blood samples were collected after 6 h of fasting for HbA1c level measurement on the 67th day. The detailed dosing regimen is provided in the Supporting Information (Figure S11). |
参考文献 |
|
其他信息 |
Trelagliptin is a member of benzenes and a nitrile.
Trelagliptin is under investigation in clinical trial NCT03555591 (Specified Drug-Use Survey of Trelagliptin Tablets "Survey on Long-term Use in Patients With Type 2 Diabetes Mellitus"). Dipeptidyl peptidase-4 (DPP-4) is one of the widely explored novel targets for Type 2 diabetes mellitus (T2DM) currently. Research has been focused on the strategy to preserve the endogenous glucagon like peptide (GLP)-1 activity by inhibiting the DPP-4 action. The DPP-4 inhibitors are weight neutral, well tolerated and give better glycaemic control over a longer duration of time compared to existing conventional therapies. The journey of DPP-4 inhibitors in the market started from the launch of sitagliptin in 2006 to latest drug teneligliptin in 2012. This review is mainly focusing on the recent medicinal aspects and advancements in the designing of DPP-4 inhibitors with the therapeutic potential of DPP-4 as a target to convey more clarity in the diffused data.[1] Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin.[2] Poor medication adherence is one of the leading causes of suboptimal glycaemic control in approximately half of the patients with type 2 diabetes mellitus (T2DM). Long-acting antidiabetic drugs are clinically needed for improving patients' compliance. Dipeptidyl peptidase-4 (DPP-4) inhibitors play an increasingly important role in the treatment of T2DM because of their favorable properties of weight neutrality and hypoglycemia avoidance. Herein, we report the successful discovery and scale-up synthesis of compound 5, a structurally novel, potent, and long-acting DPP-4 inhibitor for the once-weekly treatment of T2DM. Inhibitor 5 has fast-associating and slow-dissociating binding kinetics profiles as well as slow clearance rate and long terminal half-life pharmacokinetic properties. A single-dose oral administration of 5 (3 mg/kg) inhibited >80% of DPP-4 activity for more than 7 days in diabetic mice. The long-term antidiabetic efficacies of 5 (10 mg/kg, qw) were better than those of the once-weekly trelagliptin and omarigliptin, especially in decreasing the hemoglobin A1c level.[3] |
分子式 |
C22H26FN5O6
|
---|---|
分子量 |
475.47
|
精确质量 |
475.186
|
元素分析 |
C, 55.57; H, 5.51; F, 4.00; N, 14.73; O, 20.19
|
CAS号 |
1029877-94-8
|
相关CAS号 |
Trelagliptin;865759-25-7
|
PubChem CID |
44183569
|
外观&性状 |
White to off-white solid powder
|
LogP |
1.234
|
tPSA |
171.65
|
氢键供体(HBD)数目 |
3
|
氢键受体(HBA)数目 |
10
|
可旋转键数目(RBC) |
6
|
重原子数目 |
34
|
分子复杂度/Complexity |
750
|
定义原子立体中心数目 |
1
|
SMILES |
FC1C([H])=C([H])C(C#N)=C(C=1[H])C([H])([H])N1C(N(C([H])([H])[H])C(C([H])=C1N1C([H])([H])C([H])([H])C([H])([H])[C@]([H])(C1([H])[H])N([H])[H])=O)=O.O([H])C(C([H])([H])C([H])([H])C(=O)O[H])=O
|
InChi Key |
OGCNTTUPLQTBJI-XFULWGLBSA-N
|
InChi Code |
InChI=1S/C18H20FN5O2.C4H6O4/c1-22-17(25)8-16(23-6-2-3-15(21)11-23)24(18(22)26)10-13-7-14(19)5-4-12(13)9-20;5-3(6)1-2-4(7)8/h4-5,7-8,15H,2-3,6,10-11,21H2,1H3;1-2H2,(H,5,6)(H,7,8)/t15-;/m1./s1
|
化学名 |
2-[[6-[(3R)-3-aminopiperidin-1-yl]-3-methyl-2,4-dioxopyrimidin-1-yl]methyl]-4-fluorobenzonitrile;butanedioic acid
|
别名 |
SYR-472; SYR 472; SYR472; TRELAGLIPTIN SUCCINATE; 1029877-94-8; Trelagliptin (succinate); Trelagliptin; Trelagliptin succinate; brand name: Zafatek
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.26 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (5.26 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (5.26 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 50 mg/mL (105.16 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶. 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1032 mL | 10.5159 mL | 21.0318 mL | |
5 mM | 0.4206 mL | 2.1032 mL | 4.2064 mL | |
10 mM | 0.2103 mL | 1.0516 mL | 2.1032 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT01632007 | Completed | Drug: SYR-472 Drug: Placebo |
Diabetes Mellitus | Takeda | May 2012 | Phase 3 |
NCT00760344 | Completed | Drug: SYR-472 Drug: Placebo |
Diabetes Mellitus | Takeda | March 2007 | Phase 2 |
NCT03231709 | Completed | Drug: Trelagliptin Drug: Alogliptin |
Type 2 Diabetes Mellitus | Takeda | August 18, 2017 | Phase 4 |
NCT00653185 | Completed | Drug: SYR-472 Drug: Placebo |
Diabetes Mellitus | Takeda | May 2007 | Phase 2 |
NCT01751360 | Completed | Drug: SYR-472 | Diabetes Mellitus | Takeda | April 2013 | Phase 3 |