THZ1-R

别名: THZ1-R; THZ1-R; 1621523-07-6; N-[3-[[5-chloro-4-(1H-indol-3-yl)pyrimidin-2-yl]amino]phenyl]-4-[4-(dimethylamino)butanoylamino]benzamide; CHEMBL4303279; THZ1R; THZ1 R
目录号: V5013 纯度: ≥98%
THZ1-R 是 THZ1 的新型非半胱氨酸反应性类似物,其对 CDK7 的抑制活性较低,与 CDK7 的结合 Kdof 为 142 nM。
THZ1-R CAS号: 1621523-07-6
产品类别: New6
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10mg
25mg
50mg
100mg

Other Forms of THZ1-R:

  • THZ1 Hydrochloride
  • (E/Z)-THZ1 dihydrochloride
  • bio-THZ1
  • THZ1
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
顾客使用InvivoChem 产品THZ1-R发表1篇科研文献
纯度/质量控制文件

纯度: ≥98%

产品描述
THZ1-R 是 THZ1 的一种新型非半胱氨酸反应性类似物,其对 CDK7 的抑制活性较低,与 CDK7 的结合 Kd 为 142 nM。 THZ1 是一种新型、有效、选择性和共价 CDK7 抑制剂,具有前所未有的靶向位于经典激酶结构域之外的远程半胱氨酸残基的能力,提供了一种意想不到的实现 CDK7 选择性的方法。 THZ1 通过靶向激酶结构域之外的 C312 残基来共价修饰 CDK7,从而提供了一种意想不到的实现共价选择性的方法。 THZ1 有效抑制 Jurkat 和 Loucy T-ALL 细胞系的增殖,IC50 值分别为 50nM 和 0.55nM。在激酶结合实验中,THZ1表现出良好的结合亲和力,IC50值为3.2nM。
生物活性&实验参考方法
靶点
CDK7 (Kd = 142 nM)
体外研究 (In Vitro)
THZ1-R 的 IC50 为 146 nM,对 CDK7 的亲和力比 THZ1 低。
体内研究 (In Vivo)
THZ1 减少人类异种移植小鼠模型中 KOPTK1 T-ALL 细胞的增殖。 THZ1 在 10 mg/kg 时具有良好的耐受性,没有观察到体重减轻或行为变化,这表明它不会对动物造成明显的毒性
酶活实验
抑制剂处理实验[1]
进行了扩展数据图5a中描述的时间过程实验,以确定CDK7完全失活所需的最短时间。用THZ1、THZ1-R或DMSO处理细胞0-6小时,以评估时间对THZ1介导的RNAPII CTD磷酸化抑制的影响。对于后续实验,除非另有说明,否则用上述时间过程实验确定的化合物处理细胞4小时。对于抑制剂洗脱实验(图2e,f;扩展数据图5),用THZ1、THZ1-R或DMSO处理细胞4小时。随后去除含有抑制剂的培养基以有效“洗脱”化合物,并允许细胞在没有抑制剂的情况下生长。对于每个实验,检测裂解物的RNAPII CTD磷酸化和其他特定蛋白质。
细胞实验
高通量细胞系平板活性测定[1]
将细胞接种在384孔微孔板中,在含有5%FBS和青霉素/链霉抗生物素的培养基中以约15%的融合率接种。用THZ1或DMSO处理细胞72小时,并用刃天青测定细胞存活率。
细胞增殖试验[2]
在病毒感染和嘌呤霉素选择后,将细胞接种在1ml培养基中的12孔板(密度为5×103)中。14天后,细胞用1%甲醛固定15分钟,用结晶紫(0.05%,wt/vol)染色15分钟,这是一种染色质结合细胞化学染色。这些板在大量去离子水中广泛清洗,在滤纸上倒置干燥,并用爱普生扫描仪成像。 对于96孔板中的3天细胞增殖试验,细胞以每孔6000至10000个细胞的密度铺板,并在第二天用不同浓度的THZ1或YKL-116处理。孵育72小时后,将CellTiter-Glo试剂直接加入细胞中,并在平板阅读器上读取发光信号。
动物实验
Formulated in 10% DMSO in D5W; 10 mg/kg; i.v. injection
Bioluminescent xenografted mouse model
参考文献

[1]. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature. 2014 Jul 31;511(7511):616-20.

其他信息
THZ1 is a member of the class of indoles that is 1H-indole substituted by a 5-chloro-2-[3-(4-{[(2E)-4-(dimethylamino)but-2-enoyl]amino}benzamido)anilino]pyrimidin-4-yl group at position 3. It is a selective and potent covalent inhibitor of CDK7 that exhibits anti-proliferative effects in cancer cell lines. It has a role as an EC 2.7.11.22 (cyclin-dependent kinase) inhibitor and an antineoplastic agent. It is a member of indoles, an aminopyrimidine, a member of benzamides, an organochlorine compound, an enamide and a secondary carboxamide.
Tumour oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state, but direct pharmacological inhibition of transcription factors has so far proven difficult. However, the transcriptional machinery contains various enzymatic cofactors that can be targeted for the development of new therapeutic candidates, including cyclin-dependent kinases (CDKs). Here we present the discovery and characterization of a covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell-line profiling indicates that a subset of cancer cell lines, including human T-cell acute lymphoblastic leukaemia (T-ALL), have exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL cells shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and the key role of RUNX1 in the core transcriptional regulatory circuitry of these tumour cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumour types that are dependent on transcription for maintenance of the oncogenic state.[1]
High-grade serous ovarian cancer is characterized by extensive copy number alterations, among which the amplification of MYC oncogene occurs in nearly half of tumors. We demonstrate that ovarian cancer cells highly depend on MYC for maintaining their oncogenic growth, indicating MYC as a therapeutic target for this difficult-to-treat malignancy. However, targeting MYC directly has proven difficult. We screen small molecules targeting transcriptional and epigenetic regulation, and find that THZ1 - a chemical inhibiting CDK7, CDK12, and CDK13 - markedly downregulates MYC. Notably, abolishing MYC expression cannot be achieved by targeting CDK7 alone, but requires the combined inhibition of CDK7, CDK12, and CDK13. In 11 patient-derived xenografts models derived from heavily pre-treated ovarian cancer patients, administration of THZ1 induces significant tumor growth inhibition with concurrent abrogation of MYC expression. Our study indicates that targeting these transcriptional CDKs with agents such as THZ1 may be an effective approach for MYC-dependent ovarian malignancies.[2]
Small cell lung cancer (SCLC) is an aggressive disease with high mortality, and the identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library, we observe that SCLC is sensitive to transcription-targeting drugs, in particular to THZ1, a recently identified covalent inhibitor of cyclin-dependent kinase 7. We find that expression of super-enhancer-associated transcription factor genes, including MYC family proto-oncogenes and neuroendocrine lineage-specific factors, is highly vulnerability to THZ1 treatment. We propose that downregulation of these transcription factors contributes, in part, to SCLC sensitivity to transcriptional inhibitors and that THZ1 represents a prototype drug for tailored SCLC therapy.[3]
The MYC oncoproteins are thought to stimulate tumor cell growth and proliferation through amplification of gene transcription, a mechanism that has thwarted most efforts to inhibit MYC function as potential cancer therapy. Using a covalent inhibitor of cyclin-dependent kinase 7 (CDK7) to disrupt the transcription of amplified MYCN in neuroblastoma cells, we demonstrate downregulation of the oncoprotein with consequent massive suppression of MYCN-driven global transcriptional amplification. This response translated to significant tumor regression in a mouse model of high-risk neuroblastoma, without the introduction of systemic toxicity. The striking treatment selectivity of MYCN-overexpressing cells correlated with preferential downregulation of super-enhancer-associated genes, including MYCN and other known oncogenic drivers in neuroblastoma. These results indicate that CDK7 inhibition, by selectively targeting the mechanisms that promote global transcriptional amplification in tumor cells, may be useful therapy for cancers that are driven by MYC family oncoproteins. Objectives: Oesophageal squamous cell carcinoma (OSCC) is an aggressive malignancy and the major histological subtype of oesophageal cancer. Although recent large-scale genomic analysis has improved the description of the genetic abnormalities of OSCC, few targetable genomic lesions have been identified, and no molecular therapy is available. This study aims to identify druggable candidates in this tumour. Design: High-throughput small-molecule inhibitor screening was performed to identify potent anti-OSCC compounds. Whole-transcriptome sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) were conducted to decipher the mechanisms of action of CDK7 inhibition in OSCC. A variety of in vitro and in vivo cellular assays were performed to determine the effects of candidate genes on OSCC malignant phenotypes. [4]
Results: The unbiased high-throughput small-molecule inhibitor screening led us to discover a highly potent anti-OSCC compound, THZ1, a specific CDK7 inhibitor. RNA-Seq revealed that low-dose THZ1 treatment caused selective inhibition of a number of oncogenic transcripts. Notably, further characterisation of the genomic features of these THZ1-sensitive transcripts demonstrated that they were frequently associated with super-enhancer (SE). Moreover, SE analysis alone uncovered many OSCC lineage-specific master regulators. Finally, integrative analysis of both THZ1-sensitive and SE-associated transcripts identified a number of novel OSCC oncogenes, including PAK4, RUNX1, DNAJB1, SREBF2 and YAP1, with PAK4 being a potential druggable kinase. Conclusions: Our integrative approaches led to a catalogue of SE-associated master regulators and oncogenic transcripts, which may significantly promote both the understanding of OSCC biology and the development of more innovative therapies.[5]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C₃₁H₃₀CLN₇O₂
分子量
568.07
精确质量
567.214
元素分析
C, 65.54; H, 5.32; Cl, 6.24; N, 17.26; O, 5.63
CAS号
1621523-07-6
相关CAS号
THZ1;1604810-83-4;THZ1 Hydrochloride
PubChem CID
119081415
外观&性状
Light yellow to yellow solid powder
密度
1.4±0.1 g/cm3
折射率
1.720
LogP
4.7
tPSA
115
氢键供体(HBD)数目
4
氢键受体(HBA)数目
6
可旋转键数目(RBC)
10
重原子数目
41
分子复杂度/Complexity
854
定义原子立体中心数目
0
InChi Key
TUERFPPIPKZNKE-UHFFFAOYSA-N
InChi Code
InChI=1S/C31H30ClN7O2/c1-39(2)16-6-11-28(40)35-21-14-12-20(13-15-21)30(41)36-22-7-5-8-23(17-22)37-31-34-19-26(32)29(38-31)25-18-33-27-10-4-3-9-24(25)27/h3-5,7-10,12-15,17-19,33H,6,11,16H2,1-2H3,(H,35,40)(H,36,41)(H,34,37,38)
化学名
N-[3-[[5-chloro-4-(1H-indol-3-yl)pyrimidin-2-yl]amino]phenyl]-4-[4-(dimethylamino)butanoylamino]benzamide
别名
THZ1-R; THZ1-R; 1621523-07-6; N-[3-[[5-chloro-4-(1H-indol-3-yl)pyrimidin-2-yl]amino]phenyl]-4-[4-(dimethylamino)butanoylamino]benzamide; CHEMBL4303279; THZ1R; THZ1 R
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: > 100 mg/mL
Water:<1 mg/mL
Ethanol: N/A
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (4.40 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (4.40 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.7603 mL 8.8017 mL 17.6035 mL
5 mM 0.3521 mL 1.7603 mL 3.5207 mL
10 mM 0.1760 mL 0.8802 mL 1.7603 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • THZ1-R.THZ1 demonstrates time-dependent inhibition of CDK7in vitroand covalent binding of intracellular CDK7.2014 Jul 31;511(7511):616-20.
  • THZ1-R


    THZ1 covalently binds CDK7 C312.2014 Jul 31;511(7511):616-20.

  • THZ1-R


    THZ1 inhibits CDK12 but at higher concentrations compared to CDK7.2014 Jul 31;511(7511):616-20.

相关产品
联系我们