规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10mg |
|
||
50mg |
|
||
100mg |
|
||
1g |
|
||
5g |
|
||
Other Sizes |
|
靶点 |
Natural tetrahydroisoquinoline
|
---|---|
体外研究 (In Vitro) |
体外活性:四氢罂粟碱是 TIQ 之一,也是 Salsolinol 和四氢罂粟碱的类似物,据报道对多巴胺神经元具有神经毒性作用。 Tetrahydropapaverine 抑制产生血清素的小鼠肥大细胞瘤 P815 细胞中的血清素生物合成,IC50 为 7.5 μM,并降低色氨酸羟化酶活性,IC50 为 5.7 μM。
研究了四氢罂粟碱对产生血清素的小鼠肥大细胞瘤P815细胞血清素生物合成的抑制作用。四氢罂粟碱在5-20 μ m浓度范围内以浓度依赖的方式降低P815细胞血清素含量,在5.0 μ m浓度下,24小时血清素含量抑制率为42.1%。四氢罂粟碱50%抑制浓度(IC50)为6.2 μ m。在此条件下,四氢罂粟碱对P815细胞色氨酸羟化酶(EC 1.14.16.4, TPH)的抑制作用达到24-36小时(7.5 μ m时抑制49.1%)。而四氢罂粟碱对芳香族l -氨基酸脱羧酶活性没有影响。此外,四氢罂粟碱对P815细胞(P815-TPH)制备的TPH活性有抑制作用,IC50值为5.7 μ m。四氢罂粟碱与底物l-色氨酸无竞争性抑制P815-TPH,与辅因子dl -6-甲基-5,6,7,8-四氢罂粟碱无竞争性抑制P815-TPH。四氢罂粟碱与l -色氨酸的Ki值为10.1 μ m。这些数据表明,四氢罂粟碱通过抑制P815细胞的TPH活性导致血清素含量降低。[1] 研究人员报道了罂粟碱、四氢罂粟碱、二甲氧基苯基乙胺(DMPEA)和1-甲基-4-苯基吡啶离子(MPP+)对腹侧中脑-纹状体共培养的多巴胺能神经元的神经毒性作用。这些化合物已被报道为线粒体毒素,可能与帕金森病的病因和发病机制有关。酪氨酸羟化酶(TH)阳性神经元呈剂量依赖性减少。罂粟碱和MPP+对th阳性神经元的毒性最大。对th阳性神经元的毒性程度依次为罂粟碱、MPP+、四氢罂粟碱、DMPEA。这种毒性顺序与报道的这些化合物对nadh相关的线粒体呼吸和复合体I活性的抑制作用大致相同。这些发现表明,儿茶酚环中二甲氧基残基的存在增加了培养中多巴胺能神经元的毒性。[2] |
体内研究 (In Vivo) |
研究人员报告了3,4-二甲氧基苯乙胺(DMPEA)和四氢罂粟碱(THP)对大鼠黑纹状体系统的毒性作用;THP是一种四氢异喹啉化合物,可由DMPEA及其氧化代谢物二甲氧基苯乙醛偶联而得;这两种化合物都是线粒体复合物i的有效抑制剂。这些化合物通过200微利微渗透泵注入雄性Sprague-Dawley大鼠单侧尾壳核7天。注射侧纹状体多巴胺在注射DMPEA 16.55微mol/7 d后显著降低至非注射侧的86%,注射7.90微mol/7 d后显著降低至非注射侧的73%;由于注射thp的大鼠未注射侧多巴胺也减少,注射侧多巴胺为生理盐水对照组的55%。DMPEA注射16.55微mol/7 d后,酪氨酸羟化酶(TH)阳性的黑质神经元减少到未注射侧的76%,THP注射7.90微mol/7 d后减少到77%。二甲氧基苯基-四氢异喹啉化合物似乎是强效的神经毒素。 [3]
|
细胞实验 |
四氢罂粟碱处理P815细胞显著降低细胞内血清素含量呈浓度依赖性。在5.0 μM浓度下,四氢罂粟碱可使血清素含量降低57.9%(表1),IC50值为6.2 μM(表1)。在此条件下,四氢罂粟碱可显著抑制细胞内TPH活性(7.5 μM浓度下抑制49.1%),而AADC活性未受影响。[1]
|
参考文献 | |
其他信息 |
Tetrahydroisoquinolines (TIQs) have been extensively studied to have a neurotoxic activity (Nagatsu, 1997) and an inhibitory effect on dopamine biosynthesis (Kim et al., 2001, Shih et al., 1999). TIQs are also structurally similar to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a Parkinson-like syndrome in human and non-human primates (McNaught et al., 1998). Among TIQs, salsolinol and tetrahydropapaveroline have been identified in the urine of Parkinsonian patients receiving L-DOPA therapy (Sandler et al., 1973) (Fig. 1). Salsolinol has been found to inhibit the activities of tyrosine hydroxylase (EC 1.14.16.2), the rate-limiting enzyme of catecholamine biosynthetic pathway (Minami et al., 1992) and TPH, the rate-limiting enzyme in serotonin biosynthesis (Ota et al., 1992). Tetrahydropapaveroline also inhibits the activity of tyrosine hydroxylase (Lee et al., 2001a).
Recently, it is reported that tetrahydropapaveroline inhibits dopamine biosynthesis by the inhibition of tyrosine hydroxylase in PC12 cells (Lee et al., 2001a) and also reduces serotonin content by the inhibition of TPH in murine mastocytoma P815 cells (Kim et al., 2003). In addition, tetrahydropapaveroline has been proven to non-competitively inhibit TPH activity with the substrate L-tryptophan (Kim et al., 2003). Tetrahydropapaverine, one of the TIQs and an analogue of salsolinol and tetrahydropapaveroline, has been reported to have neurotoxic effects on dopamine neurons (Koshimura et al., 1997) (Fig. 1). However, the effects of tetrahydropapaverine on indoleamine biosynthesis or the metabolism of it have not been evaluated. The murine mastocytoma P815 cells are known to produce serotonin and to have a high TPH activity (Schindler et al., 1959). P815 cells also express histamine and L-histidine decarboxylase (Schindler et al., 1959, Imanishi et al., 1987). The present study was, therefore, undertaken to investigate the inhibitory effects of tetrahydropapaverine on serotonin biosynthesis in P815 cells and TPH activity. The enzyme source of TPH was prepared from the P815 cells (P815-TPH).[1] 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that induces long-lasting parkinsonism in primates. The clinical features of MPTP-induced parkinsonism correlate with the loss of dopaminergic neurons and the depletion of dopamine in the nigro-striatal system. Hence, it has been speculated that Parkinson's disease may be induced by endogenous or environmental neurotoxins bioactivated in the brain, like MPTP, and this concept has opened up tremendous studies on potential nigral neurotoxins, both endogenous and exogenous. Among these compounds, tetrahydroisoquinolines (TIQs) and β-carbolines have been most extensively studied. TIQs are contained in foods, such as cheese, wine, and cocoa, and can be easily transported to the brain, and some of the TIQ compounds have been found in both parkinsonian and normal human brains. Chronic administration of TIQ in monkeys produces Parkinson-like symptoms as well as significant decrease of dopamine and tyrosine hydroxylase (TH) activity in the substantia nigra. TIQ is metabolized to N-methyl-TIQ by N-methyl-transferase and the latter compound is oxidized to N-methyl-tetrahydroisoquinolinium ion by monoamine oxidase. This ion inhibits activities of TH and mitochondrial complex I, and neuronal growth in tissue culture. β-Carbolines derived from indolamines have a structure closely related to MPP+ and some of the derivatives have been found in the human brain and shown to inhibit dopamine uptake, monoamine oxidase activity, mitochondrial respiration, and the growth of cultured PC12 cells. While we were studying mitochondrial toxicity of these compounds, we found that compounds dimethoxylated in the catechol ring were more potent inhibitors of mitochondrial respiration. This observation prompted us to investigate toxicity of these compounds on cultured dopaminergic neurons. For the purpose of the present study, we used dissociated mesencephalic-striatal co-cultures because they simulate more closely the in vivo condition containing trophic factors from target striatal neurons resulting in much better arborization of dendritic processes of dopaminergic neurons compared to the conventional mesencephalic cultures. The dimethoxy compounds tested in this study include tetrahydropapaverine, papaverine, their precursor dimethoxyphenylethylamine (DMPEA), and 1-methyl-4-phenylpyridinium ion (MPP+) as a positive control (Fig. 1).[2] |
分子式 |
C20H25NO4.HCL
|
---|---|
分子量 |
379.88
|
精确质量 |
379.155
|
CAS号 |
6429-04-5
|
相关CAS号 |
(R)-Tetrahydropapaverine hydrochloride;54417-53-7
|
PubChem CID |
16667431
|
外观&性状 |
Typically exists as solid at room temperature
|
密度 |
1.12g/cm3
|
沸点 |
475.8ºC at 760 mmHg
|
熔点 |
213-215ºC
|
闪点 |
202.7ºC
|
折射率 |
1.549
|
LogP |
0.697
|
tPSA |
53.53
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
5
|
可旋转键数目(RBC) |
6
|
重原子数目 |
26
|
分子复杂度/Complexity |
407
|
定义原子立体中心数目 |
0
|
SMILES |
Cl[H].O(C([H])([H])[H])C1=C(C([H])=C2C([H])([H])C([H])([H])N([H])C([H])(C([H])([H])C3C([H])=C([H])C(=C(C=3[H])OC([H])([H])[H])OC([H])([H])[H])C2=C1[H])OC([H])([H])[H]
|
InChi Key |
VMPLLPIDRGXFTQ-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C20H25NO4.ClH/c1-22-17-6-5-13(10-18(17)23-2)9-16-15-12-20(25-4)19(24-3)11-14(15)7-8-21-16;/h5-6,10-12,16,21H,7-9H2,1-4H3;1H
|
化学名 |
1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline;hydrochloride
|
别名 |
6429-04-5; Tetrahydropapaverine hydrochloride; 1-(3,4-dimethoxybenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride; Tetrahydropapaverine HCl; DL-Norlaudanosine hydrochloride; Norlaudanosine Hydrochloride; 1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride; 1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline;hydrochloride; Norlaudanosine HCl
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.58 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (6.58 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (6.58 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.6324 mL | 13.1621 mL | 26.3241 mL | |
5 mM | 0.5265 mL | 2.6324 mL | 5.2648 mL | |
10 mM | 0.2632 mL | 1.3162 mL | 2.6324 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。