Temsavir

别名: BMS-626529; BMS 626529; BMS-626529; Temsavir (BMS-626529); 1-(4-benzoylpiperazin-1-yl)-2-(4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione; 4B6J53W8N3 1-(4-苯甲酰基哌嗪-1-基)-2-[4-甲氧基-7-(3-甲基-1H-1,2,4-三氮唑-1-基)-1H-吡咯并[2,3-c]吡啶-3-基)乙烷-1,2-二酮; BMS626529;BMS-626529
目录号: V3503 纯度: ≥98%
Temsavir(以前称为 BMS626529;BMS-626529)是一种新型、有效的附着抑制剂,针对 HIV-1gp120 并阻止其与 CD4+T 细胞结合。
Temsavir CAS号: 701213-36-7
产品类别: HIV
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Temsavir:

  • 福斯特沙韦Tris
  • 福斯特沙韦
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Temsavir(以前称为 BMS626529;BMS-626529)是一种新型、有效的附着抑制剂,靶向 HIV-1 gp120 并阻止其与 CD4+ T 细胞结合。 Temsavir 也是 BMS-626529 的膦酰氧基甲基前药,靶向 HIV-1 gp120 并阻止其与 CD4(+) T 细胞结合。 BMS-626529 的半最大有效浓度 (EC(50)) 值<10 nm,针对最易受影响的病毒,半最大有效浓度值在低 pM 范围内。
生物活性&实验参考方法
靶点
HIV-1
体外研究 (In Vitro)
Temsavir/BMS-626529 的半最大有效浓度 (EC50) 值 <10 nm= 反对= 绝大多数= 大部分= 病毒= 分离株。= bms-626529= 表现= 平均= ec50= lai= 病毒= 0.4= nm.= 0.01= 最易受影响= 并且=>2,000 nM 针对最不易受影响的病毒。在来自不同人体组织的多种细胞类型中检查了 BMS-626529 的细胞毒性特征。在 MT-2(T 淋巴细胞)、HEK293(肾)、HEp-2(喉)、HepG2(肝)、HeLa(子宫颈)、HCT116(结直肠)、MCF-7(乳腺)中观察到 CC50 值 >200 μM 、SK-N-MC(神经上皮)、HOS(骨)、H292(肺)和 MDBK(牛肾)细胞在培养 3 或 6 天后进行测量。培养 6 天后,T 细胞系 PM1 和 PBMC 中的 CC50 值分别为 105 和 192 μM。这些结果表明,BMS-626529 在细胞培养物中表现出较低的细胞毒性[1]。 BMS-626529 对一组临床分离株表现出广谱抗病毒活性,50% 抑制浓度 (IC50) 范围从亚纳摩尔水平到 >0.1 µM[2]。
体内研究 (In Vivo)
血浆HIV-1 RNA载量较基线的最大中位数下降范围为1.21至1.73 log(10)拷贝/mL。BMS-626529的血浆浓度与抗病毒反应无关,而低基线抑制浓度和最低和平均稳态BMS-626529血浆浓度,当通过基线蛋白结合调整的90%抑制浓度(抑制商)调整时,与抗病毒反应相关。BMS-663068总体耐受良好。 结论:联合或不联合利托那韦给药BMS-663068 8天可显著降低血浆HIV-1 RNA水平,并且通常耐受性良好。BMS-663068作为联合抗逆转录病毒治疗的一部分进行长期临床试验是有必要的。临床试验注册,nct01009814 .[2]
酶活实验
Micro BioSpin 6 柱用于测量 [3H]BMS-488043 或 [3H]BMS-626529 与 gp120 的结合。使含有 25 mM Tris-HCl (pH 7.5)、125 mM NaCl、50 nM gp120JRFL 和 [3H]BMS-488043 或 [3H]BMS-626529 连续稀释液的结合溶液 (30 μL) 平衡,然后吸附到MicroBioSpin 6 色谱柱。将柱离心(~14,000 rpm)5 分钟,收集洗脱液,并用闪烁计数器测定放射性。为了测量解离动力学,将 150 nM [3H]BMS-626529 或 90 nM [3H]BMS-488043 与 60 nM gp120 在环境温度下孵育 1 小时以实现平衡结合,然后大摩尔过量(14 倍)添加可溶性 CD4 蛋白以驱动解离。在指定的时间间隔取出等分试样,吸附到旋转柱上,然后离心,并对洗脱液中的放射性进行定量。通过比较经过和不经过可溶性 CD4 激发的平行样品的氚信号,可以确定化合物结合百分比[1]。
细胞实验
细胞毒性测定在连续稀释的 BMS-626529 存在下进行长达 6 天,并使用 XTT 测定对细胞活力进行定量。为了确定 CC50 值(杀死 50% 细胞所需的药物浓度),实验室适应的外周血单核细胞 (PBMC) 最初以 0.1×106 个细胞/mL 的密度进行铺板。在没有化合物的情况下,细胞密度通常在 6 天后达到 1×106 至 1.2×106/mL[1]。
动物实验
Fifty HIV-1-infected subjects were randomized to 1 of 5 regimen groups (600 mg BMS-663068 plus 100 mg ritonavir every 12 hours [Q12H], 1200 mg BMS-663068 plus 100 mg ritonavir every bedtime, 1200 mg BMS-663068 plus 100 mg ritonavir Q12H, 1200 mg BMS-663068 Q12H plus 100 mg ritonavir every morning, or 1200 mg BMS-663068 Q12H) for 8 days in this open-label, multiple-dose, parallel study. The study assessed the pharmacodynamics, pharmacokinetics, and safety of BMS-663068.[2]
药代性质 (ADME/PK)
Absorption
The absorption of temsavir is significantly limited by suboptimal dissolution and solubility following oral administration. Fostemsavir, a phosphonooxymethyl prodrug of temsavir, has improved aqueous solubility and stability under acidic conditions as compared to its parent drug - following oral administration of fostemsavir, the absolute bioavailability is approximately 26.9%. The Cmax and AUCtau following oral administration of fostemsavir 600mg twice daily was 1770 ng/mL and 12,900 ng.h/L, respectively, with a Tmax of approximately 2 hours. Co-administration of fostemsavir with a standard meal increases its AUC by approximately 10%, while co-administration with a high-fat meal increases its AUC by approximately 81%.

Route of Elimination
Temsavir is highly metabolized, after which it is excreted in the urine and feces as inactive metabolites. Approximately 51% of a given dose is excreted in the urine, with <2% comprising unchanged parent drug, and 33% is excreted in the feces, of which 1.1% is unchanged parent drug.

Volume of Distribution
The steady-state volume of distribution of temsavir following intravenous administration is approximately 29.5 L.

Clearance
The mean clearance and apparent clearance of temsavir, the active metabolite of fostemsavir, are 17.9 L/h and 66.4 L/h, respectively.
Metabolism / Metabolites
Fostemsavir is rapidly hydrolyzed to temsavir, its active metabolite, by alkaline phosphatase(s) present at the brush border membrane of the intestinal lumen. Temsavir undergoes further biotransformation to two predominant inactive metabolites: BMS-646915, a product of hydrolysis by esterases, and BMS-930644, an N-dealkylated metabolite generated via oxidation by CYP3A4. Approximately 36.1% of an administered oral dose is metabolized by esterases, 21.2% is metabolized by CYP3A4, and <1% is conjugated by UDP-glucuronosyltransferases (UGT) prior to elimination. Both temsavir and its two predominant metabolites are known to inhibit BCRP.
Biological Half-Life
The half-life of temsavir is approximately 11 hours. Fostemsavir is generally undetectable in plasma following oral administration.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
In registration clinical trials, fostemsavir was associated with alanine aminotransferase (ALT) elevations in up to 25% of patients, but levels above 5 times the upper limit of normal (ULN) arose in only 4% of subjects. Most ALT elevations were transient, asymptomatic, and did not require dose modification or discontinuation. The more marked ALT elevations were usually attributable to other conditions or complications of HIV infection. No convincing cases of fostemsavir induced liver injury were observed in preregistration trials. Since approval of fostemsavir for use as a part of a multidrug therapy of HIV, there have been no published case reports of clinically apparent liver injury attributed to its use.
Interestingly, in the large preregistration trial of fostemsavir, elevations in serum aminotransferase levels were particularly noted in patients with coinfection with either hepatitis B virus (HBV) or hepatitis C virus (HCV). The deaths from liver disease in this trial appeared to be due to worsening of the coinfection during therapy. Clearly, patients with HBV or HCV coinfection should be treated for those viral infections before or concurrent with antiretroviral therapy with fostemsavir.
Likelihood score: E* (unproven but suspected cause of clinically apparent liver injury).
Protein Binding
Temsavir is approximately 88.4% protein-bound in plasma, primarily to serum albumin.
参考文献

[1]. In vitro antiviral characteristics of HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068. Antimicrobial Agents and Chemotherapy (2012), 56(7), 3498-3507.

[2]. Pharmacodynamics, safety, and pharmacokinetics of BMS-663068, an oral HIV-1 attachment inhibitor in HIV-1-infected subjects. J Infect Dis. 2012 Oct 1;206(7):1002-11.

其他信息
BMS-663068 is the phosphonooxymethyl prodrug of BMS-626529, a novel small-molecule attachment inhibitor that targets HIV-1 gp120 and prevents its binding to CD4(+) T cells. The activity of BMS-626529 is virus dependent, due to heterogeneity within gp120. In order to better understand the anti-HIV-1 spectrum of BMS-626529 against HIV-1, in vitro activities against a wide variety of laboratory strains and clinical isolates were determined. BMS-626529 had half-maximal effective concentration (EC(50)) values of <10 nM against the vast majority of viral isolates; however, susceptibility varied by >6 log(10), with half-maximal effective concentration values in the low pM range against the most susceptible viruses. The in vitro antiviral activity of BMS-626529 was generally not associated with either tropism or subtype, with few exceptions. Measurement of the binding affinity of BMS-626529 for purified gp120 suggests that a contributory factor to its inhibitory potency may be a relatively long dissociative half-life. Finally, in two-drug combination studies, BMS-626529 demonstrated additive or synergistic interactions with antiretroviral drugs of different mechanistic classes. These results suggest that BMS-626529 should be active against the majority of HIV-1 viruses and support the continued clinical development of the compound.[1]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C24H23N7O4
分子量
473.48392
精确质量
473.181
元素分析
C, 60.88; H, 4.90; N, 20.71; O, 13.52
CAS号
701213-36-7
相关CAS号
Temsavir;701213-36-7;Fostemsavir Tris;864953-39-9; 864953-29-7(free base); 864953-39-9 (tromethamine) ; 864953-31-1 (disodium); 942117-71-7 (dihydrate)
PubChem CID
11317439
外观&性状
White to off-white solid powder.
密度
1.5±0.1 g/cm3
沸点
787.6±70.0 °C at 760 mmHg
闪点
430.1±35.7 °C
蒸汽压
0.0±2.7 mmHg at 25°C
折射率
1.722
LogP
-1.49
tPSA
126.31
氢键供体(HBD)数目
1
氢键受体(HBA)数目
7
可旋转键数目(RBC)
5
重原子数目
35
分子复杂度/Complexity
799
定义原子立体中心数目
0
SMILES
O=C(N1CCN(C(C2=CC=CC=C2)=O)CC1)C(C3=CNC4=C3C(OC)=CN=C4N5C=NC(C)=N5)=O
InChi Key
QRPZBKAMSFHVRW-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H23N7O4/c1-15-27-14-31(28-15)22-20-19(18(35-2)13-26-22)17(12-25-20)21(32)24(34)30-10-8-29(9-11-30)23(33)16-6-4-3-5-7-16/h3-7,12-14,25H,8-11H2,1-2H3
化学名
1-(4-benzoylpiperazin-1-yl)-2-(4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione
别名
BMS-626529; BMS 626529; BMS-626529; Temsavir (BMS-626529); 1-(4-benzoylpiperazin-1-yl)-2-(4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione; 4B6J53W8N3
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ≥ 16.67 mg/mL (~35.21 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 1.67 mg/mL (3.53 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 16.7 mg/mL澄清的DMSO储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 1.67 mg/mL (3.53 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 16.7mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 1.67 mg/mL (3.53 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 16.7 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.1120 mL 10.5601 mL 21.1202 mL
5 mM 0.4224 mL 2.1120 mL 4.2240 mL
10 mM 0.2112 mL 1.0560 mL 2.1120 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Absolute Bioavailability of BMS-626529 After Oral and Intravenous Dosing
CTID: NCT02805556
Phase: Phase 1
Status: Completed
Date: 2017-07-21
生物数据图片
  • (A) Distribution of EC50s for BMS-626529 against HIV-1 subtype B clinical isolates in the PBMC assay.(B) Comparison of EC50s for BMS-626529 and BMS-488043 against identical HIV-1 subtype B clinical isolates in the PBMC assay. [1].Antimicrobial Agents and Chemotherapy (2012), 56(7), 3498-3507.
  • Distribution of EC50s for BMS-626529 against HIV-1 non-subtype B clinical isolates in the PBMC assay. [1].Antimicrobial Agents and Chemotherapy (2012), 56(7), 3498-3507.
  • Distribution of EC50s for BMS-626529 against HIV-1 clinical isolates according to tropism in the PBMC assay. [1].Antimicrobial Agents and Chemotherapy (2012), 56(7), 3498-3507.
  • Dissociation of radiolabeled BMS-626529 and BMS-488043 from gp120JRFL. [1].Antimicrobial Agents and Chemotherapy (2012), 56(7), 3498-3507.
  • (A) Distribution of IC50s for BMS-626529 against HIV-1 subtype B envelopes, determined using the PhenoSense Entry assay.(B) Distribution of IC50s for BMS-626529 against HIV-1 non-subtype B envelopes as determined with the PhenoSense Entry assay. [1].Antimicrobial Agents and Chemotherapy (2012), 56(7), 3498-3507.
  • Spectrum of activities of BMS-626529 against HIV-1 subtype A, B, and C envelopes derived from clinical isolates in the PhenoSense Entry assay. [1].Antimicrobial Agents and Chemotherapy (2012), 56(7), 3498-3507.
  • Distribution of BMS-626529 EC50s against subtype B envelopes from HIV-1 viruses isolated from subjects with resistance to NRTIs, NNRTIs, or PIs as determined using the PhenoSense Entry assay. [1].Antimicrobial Agents and Chemotherapy (2012), 56(7), 3498-3507.
相关产品
联系我们