SW-033291

别名: SW-033291; SW033291; 2-(Butylsulfinyl)-4-phenyl-6-(2-thienyl)-thieno[2,3-b]pyridin-3-amine; SW 033291 SW-033291 ;2-(丁基亚磺酰基)-4-苯基-6-(2-噻吩基)噻吩并[2,3-b]吡啶-3-胺
目录号: V0857 纯度: ≥98%
SW033291 (SW-033291; SW 033291) 是前列腺素降解酶 15-PGD(15-羟基前列腺素脱氢酶)的选择性高亲和力抑制剂,具有潜在的肾脏和肝脏保护作用。
SW-033291 CAS号: 459147-39-8
产品类别: Dehydrogenase
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
2mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
SW033291 (SW-033291; SW 033291) 是前列腺素降解酶 15-PGD(15-羟基前列腺素脱氢酶)的选择性高亲和力抑制剂,具有潜在的肾脏和肝脏保护作用。它抑制 15-PGDH,IC50 和 Kiapp 分别为 1.5 nM 和 0.1 nM。 SW033291 抑制 15-PGDH 可以通过调节细胞凋亡、自噬和氧化应激而不是炎症来减轻脂多糖 (LPS) 诱导的急性肾损伤 (AKI)。
生物活性&实验参考方法
靶点
15-PGDH (Ki = 0.1 nM)
体外研究 (In Vitro)
将SW033291应用于细胞后,15-PGDH酶的活性降低了85%。与 PGE2 相比,高达 40 μM PGE2 时,SW033291 对 15-PGDH 的抑制是非竞争性的。用 SW033291 处理 A549 细胞后,PGE2 水平在 500 nM 时增加 3.5 倍,EC50 50 约为 75 nM[1]。
体内研究 (In Vivo)
在连续三天用 SW033291(10 mg/kg;腹腔注射;每天两次;持续 3 天)治疗的 C57BL/6J 小鼠中观察到显着的优势。其中包括外周中性粒细胞计数加倍、骨髓 SKL 细胞增加 65% 以及骨髓 SLAM 细胞增加 71%[1]。
酶活实验
重组15-PGDH蛋白的活性测定[1]
为了初步表征SW033291对15-PGDH酶活性的抑制作用,我们使用实验特定浓度的15-PGDH和SW033291>的实验特定浓度,以及反应缓冲液(50 mM Tris-HCl,pH7.5,0.01%吐温20)中的150µM NAD(+)和25µM PGE2来组装反应。将反应混合物在Envision Reader中在25℃下孵育15分钟。通过每30秒记录一次Ex/Em=340 nM/485 nM的荧光,持续3分钟,从添加PGE2后立即开始,测定NADH的生成,从而确定酶活性。IC50值用GraphPad Prism 5软件计算(http://www.graphpad.com/scientific-software/prism/)使用S形剂量反应函数,并绘制SW033291浓度图。IC50值随酶浓度的增加呈线性增加,表明其具有紧密结合抑制作用,依赖于15-PGDH:SW033291化学计量比,而不是绝对SW033291浓度。为了分析初始反应速率,在反应缓冲液(50 mM Tris-HCl pH7.5,0.01%吐温20)中以200µL的总体积组装了含有10 nM 15-PGDH酶、150µM NAD(+)、25µM PGE2和不同浓度SW033291的动力学反应。15-酮-PGE2的产生是通过每15秒跟踪NADH荧光(Ex/Em=340 nM/485 nM)的变化,持续195秒来计算的,并绘制了与反应时间的关系图。连续反应包含0、0.2 nM、0.25 nM、0.4 nM、0.5 nM、0.8 nM、1 nM、1.6 nM、2 nM、3.25 nM、5 nM,7.5 nM、10 nM、15 nM、20 nM的SW033291浓度。为了推导KiApp,绘制了相对初始反应速度与SW033291浓度的关系图,并使用GraphPad Prism 5软件拟合了紧密结合抑制剂的Morrison方程。该分析得出活性酶浓度值[E]T为8.52 nM,表明酶制剂中的活性为85.2%,KiApp=0.10 nM。
PGE2浓度对SW033291 IC50[1]的影响测定 15-PGDH酶活性测定在5 nM 15-PGDH、150µM NAD(+)、50 mM Tris-HCl、pH7.5、0.01%吐温20和PGE2浓度为5µM、10µM、20µM、40µM时进行。活性是通过每30秒测量15分钟的荧光(Ex/Em=340 nM/485 nM)测定的NADH生成速率来确定的。IC50值用GraphPad Prism 5软件计算(http://www.graphpad.com/scientific-software/prism/)如上所述。
15-PGDH热变性[1]
使用SYPRO橙色染料通过差示扫描荧光法监测15-PGDH的热变性。简而言之,将蛋白质在pH 8.0的100 mM Tris缓冲液中稀释至10µM的最终测定浓度,该缓冲液含有0.01%吐温-20和1:1000 SYPRO橙色染料。最终测定体积为20µL,含或不含100µM NADHSW033291,在试验缓冲液加0.4%(v/v)DMSO中,加入至20µM终浓度。使用实时PCR仪器记录热变性曲线,施加2 C/min的温度梯度。使用默认的Bio-Rad CFX Manager V3.1软件对数据进行分析。15-PGDH的熔化温度由-d(RFU)/dT图的拐点确定。 通过测试SW033291对HSD17B10和BDH2熔融温度的影响,评估了SW033291与15-PGDH相互作用的特异性。
细胞实验
检测SW033291对PGE2水平的影响[1]
A549细胞系在37°C下,在含有5%CO2的加湿气氛中,在补充有10%胎牛血清(FBS)和50µg/mL庆大霉素的F12K培养基中维持。细胞以每孔1X105个细胞的比例在24孔板(每孔1 mL)中两次铺板,并在用IL-1β(1 ng/mL)刺激过夜(16小时)前生长24小时,以诱导COX2表达和PGE2产生。然后用含有指定浓度SW033291的新鲜培养基再处理细胞8小时。然后收集培养基,使用PGE2酶免疫测定试剂盒分析PGE2水平。数据来自四个独立的实验。结果以图表形式列出,误差条对应于平均值的标准误差,并使用双侧t检验进行比较。使用CellTiter-Glo®测定法平行测定细胞存活率
骨髓集落形成试验[1]
为了测定集落形成能力,从8-12周龄的小鼠中分离出全骨髓。在15-PGDH敲除和对照小鼠的研究中,将每只小鼠的两万个骨髓细胞直接接种在两个3平方厘米的平板上,平板上涂有含有IL3、IL6、SCF、Epo的完全甲基纤维素培养基。在SW033291治疗小鼠的研究中(10mg/kg,每天注射5次IP,共5剂),在最后一次SW033291>或载体注射后6小时,从每只治疗和对照小鼠中采集两万个骨髓细胞,然后将其铺在两个3 cm2的平板上。14天后,由来自病例综合癌症中心造血生物库和细胞治疗核心设施的经过专门培训的人员以盲法对菌落进行计数、评分和分型。通过在光学显微镜下使用血细胞计数器进行计数,在收获时从PBS中1:100稀释液中测定骨髓细胞数。使用骨髓细胞数值,将CFU计数标准化为每股骨值。CFU计数以图表形式列出,误差条对应于平均值的标准误差,并使用双侧t检验比较不同处理。
动物实验
Animal/Disease Models: C57BL/6J mice[1]
Doses: 10 mg/kg
Route of Administration: intraperitoneal (ip)injection; twice (two times) daily; for 3 days (for 5 doses)
Experimental Results: demonstrated significant benefits, including a doubling of peripheral neutrophil counts, a 65% increase in marrow SKL cells, and a 71% increase in marrow SLAM cells.
Ex Vivo treatment of murine bone marrow with SW033291 [1]
Whole bone marrow was isolated from 8-10 week old female littermate FVB mice that were either 15-PGDH wild-type or knockout, and incubated with either 0.5 µM SW033291 or vehicle-control for 2 hours on ice. For assay of colony forming activity twenty thousand cells were plated in 3 cm2 plates coated with complete methylcellulose media containing IL3, IL6, SCF, Epo and scored after 14 days. Marrow from 3 mice were individually treated, and then plated in duplicate into a total of 6 separate wells. CFU counts were tabulated graphically with error bars corresponding to standard error of the means and different treatments were compared using 2-tailed t-tests. [1]

Hematopoietic analysis of SW033291-treated mice [1]
8-10 week old female C57BL/6J mice were injected IP with either vehicle or SW033219 (10 mg/kg) twice daily for 5 doses. Peripheral eye blood was taken from mice 6 hours after the last treatment and blood counts were recorded using the Hemavet 950fs. Blood counts were tabulated graphically with error bars corresponding to standard error of the means and compared using 2-tailed t-tests. In addition, mice were sacrificed and marrow flushed 6 hours following the final treatment for SKL and SLAM analysis as described below.
Bone marrow homing assays [1]
Whole bone marrow from 8 week old female C57BL/6J mice was labeled with 5 µM CellTrace CFSE and transplanted into lethally irradiated recipient mice (of same age, gender, and strain). Mice were irradiated with 11Gy total body irradiation 12 hours prior to transplant. Recipient mice were treated with either vehicle, 10 mg/kg SW033291, or a combination of Indomethacin (5 mg/kg) + SW033291, Plerixafor (10 mg/kg) + SW033291, EP2 Antagonist PF04418948 (10 µg/mouse) + SW033291, or EP4 Antagonist L-161982 (10 µg/mouse) + SW033291 for three doses. The three treatment doses were administered immediately following 11Gy IR, immediately following transplant, and 8 hours post transplant. After 16 hours whole marrow was flushed from recipient mice and the total percentage of CFSE positive bone marrow was analyzed on a BD LSRII flow cytometer.
Murine bone marrow transplantation [1]
For survival analysis, 8-10 week old female C57BL/6J recipient mice were lethally irradiated at 11 Gy and transplanted with 200,000 whole bone marrow cells from 8-10 week old female C57BL/6J donor mice. Following transplant the recipient mice received twice daily IP injections with either vehicle or 5 mg/kg SW033291. Animal survival was monitored and recorded daily, and displayed graphically. Significance of differences between survival curves was determined using a two tailed Log-rank (Mantel-Cox) test. To follow recovery of blood counts, 8 week old mice were lethally irradiated at 11 Gy 7 and transplanted with 500,000 whole bone marrow cells. Mice received twice daily IP injections with either vehicle or 5 mg/kg SW033291. Animals were sacrificed at days 5, 8, 12, and 18 and blood counts, bone marrow cellularity, and SKL percentage was measured at each time-point using the Hemavet 850fs. Blood counts were tabulated graphically with error bars corresponding to standard error of the means and compared using 2-tailed t-tests.
Long term survival following bone marrow transplantation [1]
0.5 million whole bone marrow cells from 8 week old wild-type mice were transplanted into recipient mice lethally irradiated with 11Gy total body irradiation 12 hours prior to transplant. Recipient mice were treated with either vehicle (N=10) or 5 mg/kg SW033291 (twice daily IP) (N=10) for 21 days. Animal survival was recorded in recipient mice at seven months post transplant.
Serial Transplantation [1]
1 million whole bone marrow cells from 8 week old wild-type mice were transplanted into recipient mice lethally irradiated with 11Gy total body irradiation 12 hours prior to transplant. Recipient mice were treated with either vehicle or 5 mg/kg SW033291 (twice daily IP) for 21 days. 8 weeks post-transplant recipient mice were sacrificed, marrow harvested, and 1 million whole marrow cells were transplanted into second cohort of lethally irradiated recipient mice. This process was serially repeated to generate 3 successive generations of mice descended from the initial transplant recipients. Animal survival was recorded at each round of transplant.
Partial hepatectomy [1]
10-12 week old male FVB mice, or 10-12 week old male 15-PGDH knockout mice on an FVB background, were placed under isoflurane anesthesia and underwent a twothirds partial hepatectomy through resection of the median and left lateral hepatic lobes as described by Mitchell and Willenbring. Mice that were treated with SW033291 received injections in a vehicle of 10% ethanol, 5% Cremaphor EL, 85% D5W, or with vehicle control. The SW033291 injections were commenced at the time of surgery and continued twice daily throughout the study. Following sacrifice, livers were removed, and weights determined for whole mouse and for isolated livers. Liver weights and ratios of liver weight to body weight were tabulated graphically with error bars corresponding to standard error of the means and compared using 2-tailed t-tests.
参考文献

[1]. TISSUE REGENERATION. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science. 2015 Jun 12;348(6240):aaa2340.

其他信息
Agents that promote tissue regeneration could be beneficial in a variety of clinical settings, such as stimulating recovery of the hematopoietic system after bone marrow transplantation. Prostaglandin PGE2, a lipid signaling molecule that supports expansion of several types of tissue stem cells, is a candidate therapeutic target for promoting tissue regeneration in vivo. Here, we show that inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme, potentiates tissue regeneration in multiple organs in mice. In a chemical screen, we identify a small-molecule inhibitor of 15-PGDH (SW033291) that increases prostaglandin PGE2 levels in bone marrow and other tissues. SW033291 accelerates hematopoietic recovery in mice receiving a bone marrow transplant. The same compound also promotes tissue regeneration in mouse models of colon and liver injury. Tissues from 15-PGDH knockout mice demonstrate similar increased regenerative capacity. Thus, 15-PGDH inhibition may be a valuable therapeutic strategy for tissue regeneration in diverse clinical contexts.[1]
15-PGDH inhibitors, such as SW033291, may also have applicability to treatment of human ulcerative colitis. Mucosal healing is increasingly recognized as a significant therapeutic goal in treatment of this disease. The activity of SW033291 in stimulating colon epithelial regeneration in the mouse DSS colitis model suggests potential applicability to this treatment need. 15-PGDH inhibitors, such as SW033291, may also have therapeutic applicability to humans undergoing surgical resection of primary liver tumors or of colon cancers metastatic to the liver. In both these cases, patient’s eligibility for surgery is limited by the requirement that the post-operative liver remnant be sufficient to enable regenerating an adequate liver mass.[1]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C21H20N2OS3
分子量
412.59
精确质量
412.073
元素分析
C, 61.13; H, 4.89; N, 6.79; O, 3.88; S, 23.31
CAS号
459147-39-8
相关CAS号
459147-39-8
PubChem CID
3337839
外观&性状
Light yellow to yellow solid powder
密度
1.4±0.1 g/cm3
沸点
670.1±55.0 °C at 760 mmHg
闪点
359.0±31.5 °C
蒸汽压
0.0±2.0 mmHg at 25°C
折射率
1.741
LogP
5.47
tPSA
132
氢键供体(HBD)数目
1
氢键受体(HBA)数目
6
可旋转键数目(RBC)
6
重原子数目
27
分子复杂度/Complexity
514
定义原子立体中心数目
0
InChi Key
LCYAYKSMOVLVRL-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H20N2OS3/c1-2-3-12-27(24)21-19(22)18-15(14-8-5-4-6-9-14)13-16(23-20(18)26-21)17-10-7-11-25-17/h4-11,13H,2-3,12,22H2,1H3
化学名
2-(Butylsulfinyl)-4-phenyl-6-(2-thienyl)-thieno[2,3-b]pyridin-3-amine
别名
SW-033291; SW033291; 2-(Butylsulfinyl)-4-phenyl-6-(2-thienyl)-thieno[2,3-b]pyridin-3-amine; SW 033291
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 83 mg/mL (201.2 mM)
Water:<1 mg/mL
Ethanol: 32 mg/mL warmed (77.6 mM)
溶解度 (体内实验)
配方 1 中的溶解度: 2.5 mg/mL (6.06 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浮液;超声助溶。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 2.5 mg/mL (6.06 mM) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清乙醇储备液加入到 400 μL PEG300 中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

View More

配方 3 中的溶解度: 2.5 mg/mL (6.06 mM) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,将 100 μL 25.0 mg/mL 澄清乙醇储备液加入 900 μL 20% SBE-β-CD 生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。


配方 4 中的溶解度: ≥ 2.5 mg/mL (6.06 mM) (饱和度未知) in 10% EtOH + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,您可以将 100 μL 25.0 mg/mL 澄清乙醇储备液添加到 900 μL 玉米油中并充分混合。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.4237 mL 12.1186 mL 24.2371 mL
5 mM 0.4847 mL 2.4237 mL 4.8474 mL
10 mM 0.2424 mL 1.2119 mL 2.4237 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • SW033291

    Effect of 15-PGDH inhibition on bone marrow.Science.2015 Jun 12;348(6240):aaa2340.
  • SW033291

    15-PGDH inhibition protects mice from DSS-induced colitis.Science.2015 Jun 12;348(6240):aaa2340.

  • SW033291

    Liver regeneration in mice after partial hepatectomy.Science.2015 Jun 12;348(6240):aaa2340.
  • SW033291

    Biological effects of 15-PGDH inhibition in mice.Science.2015 Jun 12;348(6240):aaa2340.
  • SW033291

    SW033291 potentiates hematopoietic recovery after bone marrow transplantation.Science.2015 Jun 12;348(6240):aaa2340.


  • SW033291


    15-PGDH inhibition increases BrdU incorporation in colonic crypts.Science.2015 Jun 12;348(6240):aaa2340.


相关产品
联系我们