STM2457

别名: STM-2457; STM2457; CHEMBL5291234; STM-2457; N-((6-(((cyclohexylmethyl)amino)methyl)imidazo[1,2-a]pyridin-2-yl)methyl)-4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxamide; N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxamide; SCHEMBL22499068; GTPL11529; STM 2457
目录号: V2456 纯度: ≥98%
STM-2457 (STM2457; STM 2457) 是一种新型、一流、口服生物活性、选择性催化 METTL3 抑制剂 (IC50 =16.9 nM),具有潜在的抗肿瘤活性。
STM2457 CAS号: 2499663-01-1
产品类别: Transferase
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
STM-2457(STM2457;STM 2457)是一种新型、一流、口服生物活性、选择性催化 METTL3 抑制剂(IC50 = 16.9 nM),具有潜在的抗肿瘤活性。它有潜力用于治疗急性髓系白血病(AML)。 m6A 甲基转移酶 METTL3 与急性髓系白血病 (AML) 的引发和维持有关,但针对该酶的治疗应用潜力仍不清楚。
生物活性&实验参考方法
靶点
METTL3 (IC50 = 16.9 nM)
体外研究 (In Vitro)
化合物 72,STM2457,IC50 为 8.699 μM,抑制 MOLM13 细胞增殖[1]。
我们鉴定和表征了一种高效、选择性的METTL3催化抑制剂(STM2457)及其与METTL3/METTL14结合的共晶结构。用STM2457治疗可导致AML生长减少,分化和凋亡增加。这些细胞效应伴随着m6A对已知的致白血病mrna水平的选择性降低,以及它们表达的减少,这与翻译缺陷一致[2]。
体内研究 (In Vivo)
在METTL3在体外具有强药理抑制作用的积极证据之后,我们使用临床相关的AML模型进行了体内研究。最初,我们使用了3种不同基因型的人类AML患者来源的异种移植物(PDX)。每日使用STM2457治疗可导致体内移植和AML扩展受损,并显著延长小鼠寿命(图4a-d和扩展数据图6a-e),且对小鼠体重无明显毒性或影响(扩展数据图6f)。治疗后骨髓和脾脏中人类CD45+细胞的减少也证实了抗白血病作用(图4e)。STM2457在体内有效抑制METTL3靶标,在蛋白水平上选择性减少关键的METTL3 m6A底物,而METTL3水平保持不变(扩展数据图6g)。此外,STM2457处理后,poly-A+富集RNA上的总m6A水平显著降低(扩展数据图6h)。与PDX模型平行,我们使用了一种小鼠MLL-AF9/Flt3Itd/+体内模型,在移植的AML细胞减少、脾脏大小减少、METTL3生物标志物选择性减少以及多聚a +富集RNA上m6A的减少等方面具有类似的抗白血病观察结果(扩展数据图7a-d)[2]。 最后,我们在体内评估了既定抗白血病剂量STM2457的潜在毒性。在骨髓来源的造血干细胞(hsc)和早期祖细胞(Lin−、Sca1+、Kit+)数量、外周血计数或小鼠体重方面未观察到显著变化(扩展数据图8a-e)。我们还证实了METTL3的有效催化抑制作用,因为STM2457处理后,poly-A+富集RNA上的m6A水平显著降低(扩展数据图8f)。这些数据表明,小分子抑制METTL3对AML的维持是有害的,但对正常的造血功能没有显著或持久的影响[2]。
酶活实验
METTL3/14 RF/MS甲基转移酶测定[2]
建立酶法测定抑制RNA甲基转移酶活性的IC50值。使用的酶是全长his标记的METTL3与全长flag标记的METTL14在杆状病毒表达系统中共表达。采用标准亲和层析纯化酶配合物。室温下384孔板进行酶促反应,终反应体积为20 μL,含20 mM TrisCl pH 7.6, 1 mM DTT, 0.01%吐温-20。将终浓度为5 nM的METTL3/14与不同浓度的化合物预孵育10分钟,然后加入终浓度为0.2 μM的合成RNA底物(5 ' p -uacacucgaucuggacuaaagcugcu -3 ')和终浓度为0.5 μM的s -腺苷蛋氨酸(SAM)。室温下再孵育60分钟,加入40 μL 7.5% TCA内标淬火。终止后,将板密封、离心并保存在4°C以待分析。
使用RapidFire™质谱(RF/MS)平台评估METTL3活性,以测量s -腺苷型同型半胱氨酸(SAH)产物。停止和稳定的分析板在Agilent RF300集成自动进样器/固相萃取(SPE)系统上进行分析,该系统与ABSciex 4000质谱联用,用于定量SAH,并归一化为两个内标的信号比。产物(SAH)的质量转变为384.9/135.9 Da。内标的过渡用于矩阵效应的归一化。[2]
STM2457选择性分析[2]
通过检测一组甲基转移酶和激酶的抑制水平来评估STM2457的选择性。4种RNA甲基转移酶的抑制作用在汉堡Evotec AG公司进行了测试,使用的是与上述METTL3实验等效的RFMS方法。用STM2457稀释系列测定IC50,最高浓度为120 μM,并由此推断10μM化合物的抑制程度。此外,在10 μM STM2457条件下,用tritriated SAM进行放射性测定,评估了41组DNA和蛋白质甲基转移酶的抑制水平。
细胞实验
METTL3细胞水平靶点验证[2]
使用cell Pulse Assay (DiscoverX)通过热移测量STM2457的细胞靶标接合度。使用Fugene HD按照供应商的协议,用pICP-hMETTL3-eLP(人METTL3 Met1-Leu580)或pICP-mMETTL3-eLP(小鼠METTL3 Met1-Leu580)转染HeLa细胞。转染24小时后,将细胞冷冻并保存在液氮中,直到检测当天。在实验当天,将100 nL的化合物稀释液(11点3倍稀释液,实验最高浓度:25 μM)滴入384孔(PP,透明)的检测板中。转染后的细胞在37℃水浴中解冻,用不含酚红的Opti-MEM交换冷冻保护剂。每孔加入细胞悬液20 μL,最终细胞数为1360个/孔。板用铝箔密封,在37℃下孵育1小时。之后,在45°C水浴中倒置孵育15分钟,在室温下进一步孵育10分钟,最后短暂离心以收集每孔底部的液体。随后,每孔加入25 μL检测液(工作液:16.7 v/v EA试剂、16.7 v/v裂解缓冲液和66.7%底物试剂),转移至384孔(PS,黑色,Flat Bottom)测量板。用铝箔封好,室温慢摇培养30分钟。最后,测定板在100 x g下离心1分钟,室温下使用EnVision多模板读取器测量发光。获得了3个生物重复的剂量响应曲线。<人力资源> AML细胞的流式细胞术分析[2]
用DMSO或STM2457处理细胞,并在指定时间点用抗小鼠CD11b PE/Cy5和抗人CD11b PE染色。数据分析使用LSRFortessa和FlowJo。
在指定的时间点,使用Annexin v检测载药(DMSO)或STM2457处理的人和/或小鼠AML细胞的凋亡水平。使用LSRFortessa仪器分析数据。 使用FITC BrdU Flow Kit或APC BrdU Flow Kit,使用溴脱氧尿苷(BrdU)在指定的时间点测量载药(DMSO)或STM2457处理的人类和/或小鼠AML细胞的细胞周期水平。数据分析采用LSRFortessa仪器。
Western blot分析[2]
用DMSO或指定浓度的STM2457处理细胞,72小时后将细胞颗粒重悬于全细胞裂解缓冲液(50 mM Tris-HCl pH=8, 450 mM NaCl, 0.1% NP-40, 1mM EDTA)中,并添加1mM DTT、蛋白酶抑制剂和磷酸酶抑制剂。用Bradford法测定蛋白质浓度,每轨装载等量的蛋白质。在上样前,将样品加入SDS-PAGE样品缓冲液,并在每个样品中加入DTT。SDS-PAGE凝胶分离10-40 μg的蛋白,并印迹到聚偏二氟乙烯膜上。
药物与细胞增殖试验[2]
将所有悬浮细胞接种于96孔板中,每孔5000 - 10000个细胞,一式三次,用载具或指定浓度的STM2457和STM2120 (0.04-50 μM)处理72小时。在第4天,使用新鲜培养基和化合物对所有井进行等量分割,使每口井的细胞密度与初始播种密度相匹配。第6天用CellTiter 96非放射性细胞增殖测定法测定,计算相对细胞增殖。所有化合物都溶解在DMSO中。
动物实验
For PDX experiments related to Figure 4 and Extended Data 6, 6- to 10-week-old NSG female mice were injected with 106 patient-derived AML cells by intravenous injection. For primary transplants, indicated doses of STM2457 or vehicle were delivered to the mice via intraperitoneal injection (IP) on day 5 (PDX-2) or day 10 post-transplant (PDX1,3), once daily for total 12 or 14 days (12-14 treatments). Then bone marrow and spleen cells from these mice were freshly dissected (as mentioned above) and flow-cytometry analysis was performed after staining with various antibodies.[2]
For primary and secondary transplantation experiments using primary murine MLL-AF9/Flt3ITD/+, 6- to 10-week-old NSG female mice were injected with 106 AML cells by intravenous injection. For primary transplants, indicated doses of STM2457 or vehicle were delivered to the mice via intraperitoneal injection (IP) on day 7 post-transplant, once daily for total 10 days. Then bone marrow cells from these mice was freshly dissected (as mentioned above) and blocked with anti-mouse CD16/32 (BD Pharmigen, cat. no. 101323) and 10% mouse serum. For the identification of L-GMP and CD93 populations, staining was performed using various antibodies.[2]
Generation and bioluminescent imaging of primary murine and PDX models[2]
Generation of AML PDX models and lentiviral transduction for transgenic expression of enhanced firefly luciferase was performed as described in detail by Vick, et al. 38. For primary and secondary transplantation experiments using primary murine MLL-AF9/Flt3ITD/+, 6- to 10-week-old NSG female mice were injected with 106 AML cells by intravenous injection. Indicated doses of STM2457 or vehicle were delivered to the mice via intraperitoneal injection (IP) on day 10 post-transplant, once daily for total two weeks (14 treatments). STM2457 was dissolved in 20%(w/v) 2-hydroxyproply beta-cyclodextrin vehicle. At day 10 post-transplant, the tumor burdens of the animals were detected using IVIS Lumina II with Living Image version 4.3.1 software. Briefly, 100 μl of 30 mg/ml D-luciferin was injected into the animals intraperitoneally. Ten min after injection, the animals were maintained in general anesthesia by isoflurane and put into the IVIS chamber for imaging. The detected tumor burdens were measured and quantified by the same software. Diseased mice were assessed blindly by qualified animal technicians from the Sanger mouse facility. Mice were housed in specific pathogen-free conditions in the Wellcome Sanger Institute animal facilities. All cages were on a 12:12-h light:dark cycle (lights on, 07:30) in a temperature-controlled and humidity-controlled room. Room temperature was maintained at 72 ± 2 °F (22.2 ± 1.1 °C), and room humidity was maintained at 30–70%. The animals were culled when the tumor burden was 109 photons per second or higher. All animal studies were carried out in accordance with the Animals Act 1986, UK and approved by the Ethics Committee at the Sanger Institute. Randomization and blinding were not applied. All data in this section were plotted using GraphPad Prism (Version 9).[2]
STM2457 pharmacokinetic analysis[2]
Three C57BL6/J mice were given IP injections of 30 mg/kg STM2457 and sampled serially up to 24 hours after dosing. Blood was collected from the tail vein at the indicated timepoints. Plasma was isolated by centrifugation, and 20 μL of plasma or blood was mixed with a precipitant solution of 120 μL acetonitrile and internal standard. Supernatant from this precipitation was diluted 1:1 v/v in water and 2.5 uL injections were characterised by LC-MS on a TSQ triple quadrupole mass spectrometer attached to an Accela pump and an HTS-CTC PAL autosampler. STM2457 was resolved on Hypersil Gold C18 solid phase (30 X 2.1 mm, 1.9 μm particles) with an increasing gradient of 5-95% B over 30 seconds. Mobile phases consisted of 0.1% formic acid in water (A) and acetonitrile (B) and the flow was held at 1.0 ml/min. Blood to plasma ratio was determined using results from the appropriate samples, and the LLOQ was set at 10 ng/ml.
参考文献

[1]. Mettl3 inhibitory compounds. WO2020201773A1.

[2]. Small molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021 Apr 26.

其他信息
STM2457 is a secondary carboxamide resulting from the formal condensation of the carboxy group of 4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxylic acid with the primary amino group of 1-[2-(aminomethyl)imidazo[1,2-a]pyridin-6-yl]-N-(cyclohexylmethyl)methanamine. It is a highly potent and selective first-in-class small molecule inhibitor of METTL3 (N6-adenosine-methyltransferase 70 kDa subunit) enzyme activity and exhibits anti-leukaemic activity. It has a role as an EC 2.1.1.348 (mRNA m6A methyltransferase) inhibitor, an antineoplastic agent and an apoptosis inducer. It is an imidazopyridine, a secondary carboxamide, a secondary amino compound and a pyridopyrimidine.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C25H28N6O2
分子量
444.5288
精确质量
444.23
元素分析
C, 67.55; H, 6.35; N, 18.91; O, 7.20
CAS号
2499663-01-1
PubChem CID
155167581
外观&性状
White to yellow solid powder
LogP
2.7
tPSA
91.1Ų
氢键供体(HBD)数目
2
氢键受体(HBA)数目
5
可旋转键数目(RBC)
7
重原子数目
33
分子复杂度/Complexity
872
定义原子立体中心数目
0
InChi Key
OBERVORNENYOLE-UHFFFAOYSA-N
InChi Code
InChI=1S/C25H28N6O2/c32-24-12-21(29-23-8-4-5-11-31(23)24)25(33)27-15-20-17-30-16-19(9-10-22(30)28-20)14-26-13-18-6-2-1-3-7-18/h4-5,8-12,16-18,26H,1-3,6-7,13-15H2,(H,27,33)
化学名
N-((6-(((cyclohexylmethyl)amino)methyl)imidazo[1,2-a]pyridin-2-yl)methyl)-4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxamide
别名
STM-2457; STM2457; CHEMBL5291234; STM-2457; N-((6-(((cyclohexylmethyl)amino)methyl)imidazo[1,2-a]pyridin-2-yl)methyl)-4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxamide; N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxamide; SCHEMBL22499068; GTPL11529; STM 2457
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~50 mg/mL (~112.48 mM)
Ethanol : ~89 mg/mL (200.2 mM)
Water : Insoluble (<1 mg/mL)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (4.68 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (4.68 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (4.68 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 5 mg/mL (11.25 mM) in 50% PEG300 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.2496 mL 11.2478 mL 22.4957 mL
5 mM 0.4499 mL 2.2496 mL 4.4991 mL
10 mM 0.2250 mL 1.1248 mL 2.2496 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们