规格 | 价格 | 库存 | 数量 |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
S1PR1 ( EC50 = 0.39 nM ); S1PR5 ( EC50 = 0.98 nM ); S1PR4 ( EC50 = 750 nM ); S1PR3 ( EC50 > 1000 nM ); S1PR2 ( EC50 > 10000 nM )
|
||
---|---|---|---|
体外研究 (In Vitro) |
体外活性:BAF312 (Siponimod) 是一种有效的选择性 S1P 受体激动剂,对 S1P1 和 S1P5 受体的 EC50 分别为 0.39 nM 和 0.98 nM,对 S1P2、S1P3 和 S1P4 受体的选择性超过 1000 倍。 BAF312(1 小时,1 μM)可显着促进 S1P1 受体内化 91%。激酶测定:将细胞匀浆并在 4°C 下以 26900 × g 离心 30 分钟。将膜以 2-3 mg 蛋白质/mL 重悬于 20 mM HEPES (pH 7.4)、100 mM NaCl、10 mM MgCl2、1 mM EDTA 和 0.1% 脱脂 BSA 中。使用膜进行 GTPγ[35S] 结合测定(75 mg 蛋白/mL,溶于 50 mM HEPES、100 mM NaCl、10 mM MgCl2、20 μg/mL 皂苷和 0.1% 脱脂 BSA (pH 7.4),5 mg/mL mL 与小麦胚芽凝集素包被的闪烁邻近分析珠,和 10 μM GDP 10-15 分钟。通过添加 200 pM GTPγ[35S] 开始 GTPγ[35S] 结合反应。在室温下 120 分钟后细胞测定:通过流式细胞术分析 CHO 细胞中激动剂介导的 S1P1 受体内化 Myc-tag hS1P1 细胞与激动剂在 37°C 下孵育 1 小时标准培养基,然后用 PBS 洗涤。将等分试样在冰上保存 3 小时,而另一等分试样在 37°C 的培养基(无激动剂)中放置 3(或 12)小时。然后将细胞与4 μg/mL 单克隆小鼠抗 C-myc IgG1 抗体或与同型对照小鼠 IgG1 一起在 4°C 下孵育 60 分钟,然后与 1 μg/mL Alexa488 标记的山羊抗小鼠二抗缀合物一起孵育。每个样品使用 10000 个活细胞对细胞进行流式细胞术测量。
|
||
体内研究 (In Vivo) |
BAF312 通过内化 S1P1 受体,使它们对淋巴结的出口信号不敏感,有效抑制大鼠脑脊髓炎 (EAE)。当以 0.3 mg/kg 剂量对小鼠进行预防或治疗时,BAF312 显着降低临床评分。[1]
BAF312通过内化S1P(1)受体有效地抑制了大鼠的EAE,使其对淋巴结的出口信号不敏感。在健康志愿者中,BAF312在4-6小时内导致CD4(+)T细胞、T(幼稚)、T(中央记忆)和B细胞优先减少。停止治疗后一周内,细胞计数恢复正常范围,符合BAF312的消除半衰期。尽管保留了S1P(3)受体(与小鼠心动过缓有关),BAF312在人类中诱导了快速、短暂(仅第1天)的心动过缓。BAF312介导的人心房肌细胞GIRK通道的激活可以充分解释心动过缓。[1] |
||
酶活实验 |
将细胞匀浆后,在 4°C、26900 × g 下离心 30 分钟。在 20 mM HEPES (pH 7.4)、100 mM NaCl、10 mM MgCl2、1 mM EDTA 和 0.1% 脱脂 BSA 中,膜以 2-3 mg/mL 的蛋白质浓度重悬。膜(75 mg 蛋白质/mL,溶于 50 mM HEPES、100 mM NaCl、10 mM MgCl2、20 μg/mL 皂苷和 0.1% 脱脂 BSA;pH 7.4),5 mg/mL,带有麦芽凝集素涂层闪烁GTPγ[35S] 结合技术中使用邻近分析珠和 10 μM GDP 10-15 分钟。添加 200 pM GTPγ[35S] 以启动 GTPγ[35S] 结合反应。在室温下放置 120 分钟后,将板进行 10 分钟 300 × g 离心,然后进行计数。
|
||
细胞实验 |
使用流式细胞术分析 CHO 细胞揭示了拮抗剂介导的 S1P1 受体内化。将激动剂添加到标准培养基中,并将 Myc-tag hS1P1 细胞在 37°C 下孵育 1 小时。然后用 PBS 洗涤细胞。将一份等分试样在 37°C 的培养基中(不含激动剂)放置三小时,另一份则在冰上保存三小时(或十二小时)。首先,将细胞与 4 μg/mL 单克隆小鼠抗 C-myc IgG1 抗体或同种型对照小鼠 IgG1 一起在 4°C 下孵育 60 分钟。接下来,将它们与 1 μg/mL 的山羊抗小鼠二级缀合物一起孵育,该缀合物已用 Alexa488(一种荧光染料)标记。每个样品使用 10,000 个活细胞,使用流式细胞术测量细胞。
|
||
动物实验 |
|
||
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
The time (Tmax) to attain maximum plasma concentrations (Cmax) after oral administration of immediate-release oral doses of siponimod was found to be approximately 4 hours ( with a range 3 - 8 hours). Siponimod is heavily absorbed (at a rate greater than or equal to 70%). The absolute oral bioavailability of siponimod is about 84%. Steady-state concentrations were attained after approximately 6 days of daily administration of a single dose of siponimod. **Effects of food on absorption** Food ingestion leads to delayed siponimod absorption (the median Tmax increased by approximately 2-3 hours). Food intake has no effect on the systemic exposure of siponimod (Cmax and AUC). Therefore, siponimod may be taken without regard to food. Siponimod is eliminated from the systemic circulation mainly due to metabolism, and subsequent biliary/fecal excretion. Unchanged siponimod was not detected in urine. Siponimod distributes to body tissues with an average volume of distribution of 124 L. Siponimod fraction mesaured in plasma is 68% in humans. Animal studies demonstrate that siponimod readily crosses the blood-brain-barrier. Apparent systemic clearance of 3.11 L/h has been estimated in MS patients. Metabolism / Metabolites Siponimod is extensively metabolized, mainly by CYP2C9 enzyme (79.3%), and subsequently by CYP3A4 enzyme (18.5%). The pharmacological activity of the main metabolites M3 and M17 is not expected to be responsible for the clinical effect and the safety of siponimod in humans. Biological Half-Life The apparent elimination half-life is approximately 30 hours. |
||
毒性/毒理 (Toxicokinetics/TK) |
Hepatotoxicity
In large controlled trials of siponimod in patients with multiple sclerosis, serum ALT elevations were common, typically arising during the first 3 months of treatment. The elevations were generally mild and asymptomatic, and they often returned to baseline values even with continuation of treatment or within 3 months of stopping. Aminotransferase elevations above 3 times upper limit of normal (ULN) were reported in 6% to 8% of siponimod recipients compared to less than 2% of placebo recipients. In these prelicensure clinical trials, there were no cases of acute hepatitis or clinically apparent liver injury but elevations in liver tests led to discontinuation in 1% if subjects. While siponimod is associated with lymphopenia and long term therapy is associated with risk for reactivation of herpes simplex and zoster infections, it has not been linked to cases of reactivation of hepatitis B, although one such instance has been reported with fingolimod. Thus, mild-to-moderate and transient serum enzyme elevations during therapy are not uncommon, but clinically apparent liver injury with jaundice due to siponimod has not been reported, although the clinical experience with its use has been limited. Likelihood score: E* (suspected but unproven cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation Although siponimod is highly bound in maternal plasma and unlikely to reach the breastmilk in large amounts, it is potentially toxic to the breastfed infant. Because there is no published experience with siponimod during breastfeeding, expert opinion generally recommends that the closely related drug fingolimod should be avoided during breastfeeding, especially while nursing a newborn or preterm infant. However, the manufacturer's labeling does not recommend against the use of siponimod in breastfeeding. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. ◈ What is siponimod? Siponimod (Mayzent®) is a medication approved to treat relapsing forms of multiple sclerosis (MS), including clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease. For information on multiple sclerosis, please see the MotherToBaby fact sheet at: https://mothertobaby.org/fact-sheets/multiple-sclerosis/.Sometimes when people find out they are pregnant, they think about changing how they take their medication, or stopping their medication altogether. However, it is important to talk with your healthcare providers before making any changes to how you take this medication. Your healthcare providers can talk with you about the benefits of treating your condition and the risks of untreated illness during pregnancy. ◈ I am taking siponimod, but I would like to stop taking it before becoming pregnant. How long does the drug stay in my body? People eliminate medication at different rates. In healthy adults it takes up to 10 days, on average, for most of the siponimod to be gone from the body. ◈ I take siponimod. Can it make it harder for me to get pregnant? It is not known if siponimod can make it harder to become pregnant. ◈ Does taking siponimod increase the chance for miscarriage? Miscarriage is common and can occur in any pregnancy for many different reasons. According to the product label, experimental animal studies reported an increase in pregnancy loss. Studies have not been done in human pregnancy to see if siponimod increases the chance for miscarriage. ◈ Does taking siponimod increase the chance of birth defects? Every pregnancy starts out with a 3-5% chance of having a birth defect. This is called the background risk. According to the product label, experimental animal studies reported an increased chance for birth defects. Studies have not been done in human pregnancy to see if siponimod increases the chance for birth defects above the background risk. ◈ Does taking siponimod in pregnancy cause other pregnancy-related problems? According to the product label, experimental animal studies reported a chance of low birth weight. Studies have not been done in human pregnancy to see if siponimod increases the chance for pregnancy-related problems such as preterm delivery (birth before week 37) or low birth weight (weighing less than 5 pounds, 8 ounces [2500 grams] at birth). ◈ Does taking siponimod in pregnancy affect future behavior or learning for the child? Studies have not been done to see if siponimod can cause behavior or learning issues for the child. ◈ Breastfeeding while taking siponimod: Siponimod has not been studied for use while breastfeeding. It is not known if it can enter human breastmilk or how it might affect a nursing child. If you are taking siponimod while breastfeeding and you suspect the baby has any symptoms contact the child’s healthcare provider. Be sure to talk to your healthcare provider about all of your breastfeeding questions ◈ If a male takes siponimod, could it affect fertility (ability to get partner pregnant) or increase the chance of birth defects? Studies have not been done to see if siponimod could affect male fertility or increase the chance of birth defects. In general, exposures that fathers or sperm donors have are unlikely to increase the risks to a pregnancy. For more information, please see the MotherToBaby fact sheet Paternal Exposures at https://mothertobaby.org/fact-sheets/paternal-exposures-pregnancy/. Protein Binding Protein binding of siponimod is higher than 99.9% in healthy patients as well as hepatic and renal impaired patients. Because of the high plasma protein binding of siponimod, hemodialysis is not likely to change the total and unbound siponimod concentration and no dose adjustments are expected based on this. |
||
参考文献 | |||
其他信息 |
Pharmacodynamics
**Immune system effects** Siponimod causes a dose-dependent decrease of the peripheral blood lymphocyte count within 6 hours of the first dose, caused by the reversible accumulation of lymphocytes in lymphoid tissues, due to lack of lymphocyte release. This results in a decrease in the inflammation that is involved in multiple sclerosis. Lymphocyte counts return to normal in 90% of patients within 10 days after the cessation of therapy. **Effects on heart rate and rhythm** Siponimod causes a temporary decrease in heart rate and atrioventricular conduction upon beginning treatment. The maximum fall in heart rate is observed in the first 6 hours post ingestion. Autonomic heart responses, including diurnal variation of heart rate and response to exercise activities, are not altered by siponimod treatment. **Effects on pulmonary function** Dose-dependent decreases in absolute forced expiratory volume over a time frame of 1 second were noted in siponimod-treated patients and were higher than in patients taking placebo. |
分子式 |
C62H74F6N4O10
|
---|---|
分子量 |
632.68
|
精确质量 |
1148.53
|
元素分析 |
C, 64.80; H, 6.49; F, 9.92; N, 4.88; O, 13.92
|
CAS号 |
1234627-85-0
|
相关CAS号 |
Siponimod; 1230487-00-9
|
PubChem CID |
44599207
|
外观&性状 |
Solid powder
|
熔点 |
111-112
|
LogP |
4.8
|
tPSA |
199Ų
|
氢键供体(HBD)数目 |
1
|
氢键受体(HBA)数目 |
8
|
可旋转键数目(RBC) |
9
|
重原子数目 |
37
|
分子复杂度/Complexity |
777
|
定义原子立体中心数目 |
0
|
SMILES |
FC(C1C=C(CO/N=C(/C)\C2C=CC(=C(C=2)CC)CN2CC(C(=O)O)C2)C=CC=1C1CCCCC1)(F)F.FC(C1C=C(CO/N=C(/C)\C2C=CC(=C(C=2)CC)CN2CC(C(=O)O)C2)C=CC=1C1CCCCC1)(F)F.OC(/C=C/C(=O)O)=O
|
InChi Key |
JNLIKIBISICTMS-PEJBKAKVSA-N
|
InChi Code |
InChI=1S/2C29H35F3N2O3.C4H4O4/c2*1-3-21-14-23(10-11-24(21)15-34-16-25(17-34)28(35)36)19(2)33-37-18-20-9-12-26(22-7-5-4-6-8-22)27(13-20)29(30,31)32;5-3(6)1-2-4(7)8/h2*9-14,22,25H,3-8,15-18H2,1-2H3,(H,35,36);1-2H,(H,5,6)(H,7,8)/b2*33-19+;2-1+
|
化学名 |
(E)-but-2-enedioic acid;1-[[4-[(E)-N-[[4-cyclohexyl-3-(trifluoromethyl)phenyl]methoxy]-C-methylcarbonimidoyl]-2-ethylphenyl]methyl]azetidine-3-carboxylic acid
|
别名 |
NVP-BAF-312; NVP-BAF 312; NVP-BAF312-NX; NVP-BAF312; NVP-BAF312-AEA; Siponimod fumarate; Siponimod; Mayzent; WHO 9491; WHO-9491; WHO9491; BAF-312; BAF 312; Siponimod hemifumarate; NVP-BAF312-AEA; Siponimod hemifumaric acid; Z7G02XZ0M6; Siponimod fumarate (USAN); Siponimod fumarate [USAN];BAF312
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.5806 mL | 7.9029 mL | 15.8058 mL | |
5 mM | 0.3161 mL | 1.5806 mL | 3.1612 mL | |
10 mM | 0.1581 mL | 0.7903 mL | 1.5806 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT00422175 | Completed | Drug: BAF 312 | Healthy | Novartis | October 2006 | Phase 1 |
NCT01565902 | Completed | Drug: BAF312 | Hepatic Impairment | Novartis Pharmaceuticals | October 2012 | Phase 1 |
NCT01904214 | Completed | Drug: BAF312 | Renal Impairment | Novartis Pharmaceuticals | July 2013 | Phase 1 |
NCT03338998 | Completed | Drug: BAF312 solution Drug: BAF312 tablet |
Hemorrhagic Stroke Intracerebral Hemorrhage (ICH) |
Novartis Pharmaceuticals | December 24, 2017 | Phase 2 |
NCT00879658 | Completed | Drug: BAF312 Drug: Placebo |
Relapsing-remitting Multiple Sclerosis |
Novartis Pharmaceuticals | March 30, 2009 | Phase 2 |