规格 | 价格 | 库存 | 数量 |
---|---|---|---|
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
Other Sizes |
|
体外研究 (In Vitro) |
丹参酮 IIA 具有抗肿瘤特性,例如增加肿瘤细胞死亡、减少短期细胞增殖、改变肿瘤细胞周期等。丹参酮 IIA 对 A549 细胞具有抗肿瘤作用; 24、48和72小时,丹参酮IIA的IC50分别为145.3、30.95和11.49 μM。使用 CCK-8 测定法评估分别用丹参酮 IIA (2.5 - 80 μM) 处理 24、48 和 72 小时的 A549 细胞的增殖活性。 CCK-8结果表明,丹参酮IIA可以以剂量和时间抑制的方式强烈抑制A549细胞的生长。药物治疗 48 天后,检测到 A549 细胞生长和浓度显着降低(使用浓度微量 IC50 值:丹参酮 IIA 31 μM 与 A549 相比)。使用蛋白质印迹法发现,与媒介物相比,将 A549 细胞置于丹参酮 IIA (31 μM) 48 小时后,两个药物治疗组均表达 VEGF 和 VEGFR2 [1]。丹参根中最常见的成分是丹参酮 IIA。丹参酮 IIA H9C2 细胞表达转录的 PTEN(磷酸酶和张力蛋白同源物),这是一种在细胞中发挥作用的蛋白质,可引起血管紧张素 II 诱导的细胞荧光。重要的障碍。通过磷酸化磷酸酶和张力蛋白同源物 (PTEN) 的表达,丹参酮 IIA 抑制血管紧张素 II (AngII) 产生的细胞因子 [2]。 Tanshinone IIA 促进 PI3K/Akt/mTOR 光泽并降低 AGS 细胞中 EGFR 和 IGFR 蛋白的表达 [3]。
|
---|---|
体内研究 (In Vivo) |
东莨菪碱引起的认知障碍可被丹参酮 IIA(10 或 20 mg/kg;侧壁)显着逆转[4]。通过阻断 PERK 信号传导,丹参酮 IIA(2、4、8 mg/kg;腹腔注射)可能会减少白天的内质网,这可能与对 STZ 诱导的糖尿病肾病的介导保护作用有关 [5]。丹参酮 IIA(3 和 12 mg/kg;腹腔注射)可显着抑制异位蛋白内膜发育 [6]。
|
动物实验 |
Animal/Disease Models: Male ICR mice (25–30 g)[4]
Doses: 10 or 20 mg/kg Route of Administration: Oral Experimental Results:Dramatically reversed scopolamine-induced cognitive impairment. Animal/Disease Models: STZ-treated rats [5] Doses: 2, 4, 8 mg/kg Route of Administration: intraperitoneal (ip) injection Experimental Results: diminished expression levels of transforming growth factor-β1, TSP-1, Grp78 and CHOP, and attenuated protein increased the levels of p-PERK, p-elf2α and ATF-4 in the renal tissue of diabetic rats. Animal/Disease Models: Female SD (SD (Sprague-Dawley)) rats (180 -200g) [6] Doses: 3 and 12 mg/kg Route of Administration: intraperitoneal (ip) injection Experimental Results: Dramatically inhibited the growth of ectopic endometrium. |
毒性/毒理 (Toxicokinetics/TK) |
Interactions
Protective effects of sodium tanshinone IIA sulphonate against adriamycin-induced lipid peroxidation were investigated. Data showed that treatment with sodium tanshinone IIA sulphonate could prevent mice from decrease in body weight caused by adriamycin. It was found that myocardial lipid peroxidation in sodium tanshinone IIA sulphonate-treated mice was lower compared with that in adriamycin-treated ones. The activities of some endogenous antioxidant enzymes, such as superoxide dismutase, glutathione peroxidase and catalase, were higher in the sodium tanshinone IIA sulphonate group than that in the adriamycin group. In vitro experiments showed that sodium tanshinone IIA sulphonate could inhibit adriamycin-induced mitochondrial lipid peroxidation and swelling. Sodium tanshinone IIA sulphonate could scavenge adriamycin semiquinone free radical in heart homogenate dose-dependently. Thus, protective effects of sodium tanshinone IIA sulphonate may not only be related to its antioxidant activity but also to its regulation of antioxidant enzyme activities in the heart. Although doxorubicin (DXR) is an effective antineoplastic agent; the serious cardiotoxicity mediated by the production of reactive oxygen species has remained a considerable clinical problem. /The/ hypothesis is that tanshinone IIA sodium sulfonate (TSNIIA-SS), which holds significant affects on cardioprotection in clinic, protects against DXR-induced cardiotoxicity. In vitro investigation on H9c2 cell line, as well as in vivo study in animal model of DXR-induced chronic cardiomyopathy were performed. TSNIIA-SS significantly increased cell viability and ameliorated apoptosis of DXR-injured H9c2 cells using CCK-8 assay and Hoechst 33342 stain respectively. Furthermore, the cardio-protective effects of TSNIIA-SS were confirmed with decreasing ST-interval and QRS interval by electrocardiography (ECG); improving appearance of myocardium with haematoxylin and eosin (H&E) stain; increasing myocardial tensile strength using tension to rupture (TTR) assay and decreasing fibrosis through picric-sirius red staining comparing with those receiving DXR alone. These data have provided the considerable evidences that TSNIIA-SS is a protective agent against DXR-induced cardiac injury. Although doxorubicin (DXR) is an important antineoplastic agent, the serious toxicity mediated by the production of reactive oxygen species has remained a considerable clinical problem. Our hypothesis is that tanshinone II A sodium sulfonate (TSNIIA-SS), which holds significant effects against oxidative stress, protects against DXR-induced nephropathy. Firstly, the antioxidative effects of TSNIIA-SS were confirmed using oxygen radicals absorbance capacities (ORAC) assay in vitro. Then, DXR nephropathy was induced by repeated DXR treatment and verified by kidney index (20.76 +/- 3.04 mg/mm versus 14.76 +/- 3.04 mg/mm, p < 0.001) and histochemical stain. The mice were randomized into three groups: Control group, DXR group and DXR-TSNIIA-SS group. TSNIIA-SS treatment not only improved DXR lesion identified by histochemical stain, but also regulated the expression of several proteins related with the cytoskeleton, oxidative stress and protein synthesis or degradation detected by two-dimensional electrophoresis (2-DE). These data have provided the evidence that TSNIIA-SS is a protective agent against DXR-induced nephropathy. |
参考文献 |
|
其他信息 |
1,6,6-trimethyl-8,9-dihydro-7H-naphtho[1,2-g]benzofuran-10,11-dione is an abietane diterpenoid.
Tanshinone IIA has been reported in Salvia miltiorrhiza, Salvia glutinosa, and other organisms with data available. See also: Salvia Miltiorrhiza Root (part of). Mechanism of Action Doxorubicin, one of the original anthracyclines, remains among the most effective anticancer drugs ever developed. Clinical use of doxorubicin is, however, greatly limited by its serious adverse cardiac effects that may ultimately lead to cardiomyopathy and heart failure. Tanshinone IIA is the main effective component of Salvia miltiorrhiza known as 'Danshen' in traditional Chinese medicine for treating cardiovascular disorders. The objective of this study was set to evaluate the protective effect of tanshinone IIA on doxorubicin-induced cardiomyocyte apoptosis, and to explore its intracellular mechanism(s). Primary cultured neonatal rat cardiomyocytes were treated with the vehicle, doxorubicin (1 uM), tanshinone IIA (0.1, 0.3, 1 and 3 uM), or tanshinone IIA plus doxorubicin. /The authors/ found that tanshinone IIA (1 and 3 uM) inhibited doxorubicin-induced reactive oxygen species generation, reduced the quantity of cleaved caspase-3 and cytosol cytochrome c, and increased BcL-x(L) expression, resulting in protecting cardiomyocytes from doxorubicin-induced apoptosis. In addition, Akt phosphorylation was enhanced by tanshinone IIA treatment in cardiomyocytes. The wortmannin (100 nM), LY294002 (10 nM), and siRNA transfection for Akt significantly reduced tanshinone IIA-induced protective effect. These findings suggest that tanshinone IIA protects cardiomyocytes from doxorubicin-induced apoptosis in part through Akt-signaling pathways, which may potentially protect the heart from the severe toxicity of doxorubicin. |
分子式 |
C19H18O3
|
|
---|---|---|
分子量 |
294.3444
|
|
精确质量 |
294.125
|
|
CAS号 |
568-72-9
|
|
相关CAS号 |
|
|
PubChem CID |
164676
|
|
外观&性状 |
Pink to red solid powder
|
|
密度 |
1.2±0.1 g/cm3
|
|
沸点 |
480.7±44.0 °C at 760 mmHg
|
|
熔点 |
205-207ºC
|
|
闪点 |
236.4±21.1 °C
|
|
蒸汽压 |
0.0±1.2 mmHg at 25°C
|
|
折射率 |
1.588
|
|
LogP |
5.47
|
|
tPSA |
47.28
|
|
氢键供体(HBD)数目 |
0
|
|
氢键受体(HBA)数目 |
3
|
|
可旋转键数目(RBC) |
0
|
|
重原子数目 |
22
|
|
分子复杂度/Complexity |
509
|
|
定义原子立体中心数目 |
0
|
|
SMILES |
O1C([H])=C(C([H])([H])[H])C2C(C(C3=C(C1=2)C([H])=C([H])C1=C3C([H])([H])C([H])([H])C([H])([H])C1(C([H])([H])[H])C([H])([H])[H])=O)=O
|
|
InChi Key |
INYYVPJSBIVGPH-QHRIQVFBSA-N
|
|
InChi Code |
InChI=1S/C19H23NO4/c1-20-7-6-19-10-14(21)16(24-3)9-12(19)13(20)8-11-4-5-15(23-2)18(22)17(11)19/h4-5,9,12-13,22H,6-8,10H2,1-3H3/t12-,13+,19-/m1/s1
|
|
化学名 |
(1R,9S,10S)-3-hydroxy-4,12-dimethoxy-17-methyl-17-azatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,5,11-tetraen-13-one
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 该产品在溶液状态不稳定,请现配现用。 |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.3974 mL | 16.9872 mL | 33.9743 mL | |
5 mM | 0.6795 mL | 3.3974 mL | 6.7949 mL | |
10 mM | 0.3397 mL | 1.6987 mL | 3.3974 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。