Shikonin (C.I.-75535; Isoarnebin 4)

别名: Tokyo Violet Shikonin 紫草素; 5,8-二羟基-2-[(1R)-1-羟基-4-甲基戊-3-烯基]萘-1,4-二酮; R-紫草素;右旋紫草素;紫草红;紫草素(右旋);紫草素(左旋紫草素);紫草素, 来源于紫草;紫草素,Shikonin,植物提取物,标准品,对照品;紫草素标准液;紫草素对照品;紫根色素;左旋紫草素
目录号: V14729 纯度: ≥98%
紫草素(C.
Shikonin (C.I.-75535; Isoarnebin 4) CAS号: 517-89-5
产品类别: Chloride Channel
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Shikonin (C.I.-75535; Isoarnebin 4):

  • 左旋紫草素
  • (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin; (Rac)-β,β-Dimethylacrylshikonin)
  • Acetylalkannin (Alkannin acetate)
  • Angelylalkannin
  • 紫草素
  • (Rac)-Shikonin (Shikalkin)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
紫草素(CI 75535;Isoarnebin 4)是一种天然产物,是中药“紫草”的主要成分,具有多种生物活性,例如通过抑制 TNF-α、NF-κB、HIV-1 来发挥抗炎活性。它充当 TMEM16A 氯通道抑制剂 (IC50 = 6.5 μM),也是丙酮酸激酶 M2 (PKM2) 抑制剂。紫草素还可以抑制 AIM2 炎症小体的激活。
生物活性&实验参考方法
体外研究 (In Vitro)
Shikonin,TMEM16A 氯通道抑制剂,IC50 为 6.5 μM[1]。此外,紫草激肽特异性抑制 PKM2 [2]。此外,它还可以阻止核因子-κB (NF-κB) 通路的激活并抑制肿瘤坏死因子-α (TNF-α)。与对照相比,当暴露于浓度大于 50 μM 的紫草素时,正常人角质形成细胞 (NHK) 的活力显着降低 (P<0.05)。紫草素预处理两小时可抑制 TNF-α 诱导的 NF-κB p65 核转位 [3]。用 5 和 7.5 μM 紫草素处理 12 小时后,细胞活力显着降低。与 0 小时组相比,两种细胞系的抑制作用也显示出时间依赖性模式。结果发现,在24至48小时的时间段内,5μM紫草素比2.5μM紫草素具有更强的抑制作用。当U87和U251细胞用2.5、5和7.5 μM紫草素处理24和48小时(p<0.01)时,它们的侵袭性远低于对照组[4]。
体内研究 (In Vivo)
与骨关节炎组相比,紫草素显着阻止骨关节炎大鼠模型中IL-1β和TNF-α表达水平的升高(P<0.01)。在骨关节炎大鼠模型中,与骨关节炎组相比,紫草素显着降低了 NF-κB 蛋白表达量(P<0.01)。在用紫草素治疗的大鼠骨关节炎模型中,与骨关节炎组相比,诱导的iNOS水平降低(P<0.01)。与骨关节炎组相比,紫草素治疗显着降低了骨关节炎大鼠模型中COX-2蛋白表达的增加(P<0.01)。紫草素治疗的骨关节炎大鼠模型中caspase-3活性的增加明显低于骨关节炎组(P<0.01)。接受紫草素治疗后,骨关节炎组大鼠骨关节炎模型中Akt磷酸化显着恢复(P<0.01)[5]。
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Alkannin and shikonin are naturally occurring hydroxynaphthoquinones with a well-established spectrum of wound healing, antimicrobial, anti-inflammatory, and antioxidant activities. Recently, extensive scientific effort has been focused on their effectiveness on several tumors and mechanism(s) of antitumor activity. Liposomes have been proved as adequate drug carriers offering significant advantages over conventional formulations, such as controlled release and targeted drug delivery, leading to the appearance of several liposomal formulations in the market, some of them concerning anticancer drugs. The aim of the present study was to prepare shikonin-loaded liposomes for the first time in order to enhance shikonin therapeutic index. An optimized technique based on the thin film hydration method was developed and liposomes characterization was performed in terms of their physicochemical characteristics, drug entrapment efficiency, and release profile. Results indicated the successful incorporation of shikonin into liposomes, using both 1,2-dipalmitoylphosphatidylcholine and egg phosphatidylcholine lipids. Liposomes presented good physicochemical characteristics, high entrapment efficiency and satisfactory in vitro release profile. In vitro cytotoxicity of liposomes was additionally tested against three human cancer cell lines (breast, glioma, and non-small cell lung cancer) showing a moderate growth inhibitory activity. Practical applications: Shikonin is a naturally occurring hydroxynaphthoquinone and extensive scientific research (in vitro, in vivo, and clinical trials) has been conducted during the last years, focusing on its effectiveness on several tumors and mechanism(s) of antitumor action. The purpose of this work was to prepare and characterize shikonin-loaded liposomes as a new drug delivery system for shikonin. Liposomal formulations provide significant advantages over conventional dosage forms, such as controlled release and targeted drug delivery for anticancer agents. Thus, liposomes could reduce shikonin's side effects, enhance selectivity to cancer cells and protect shikonin from internal biotransformations and instability matters (oxidization and polymerization). Furthermore, liposomal delivery helps overcome the low aqueous solubility of shikonin, which is the major barrier to its oral and internal administration, since it cannot be dissolved and further absorbed from the receptor.
参考文献

[1]. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea. Front Pharmacol. 2016 Aug 23;7:270.

[2]. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation. PLoS One. 2015 May 11;10(5):e0126459.

[3]. Shikonin Promotes Skin Cell Proliferation and Inhibits Nuclear Factor-κB Translocation via Proteasome Inhibition In Vitro. Chin Med J (Engl). 2015 Aug 20;128(16):2228-33.

[4]. Shikonin Inhibits the Migration and Invasion of Human Glioblastoma Cells by Targeting Phosphorylated β-Catenin and Phosphorylated PI3K/Akt: A Potential Mechanism for the Anti-Glioma Efficacy of a Traditional Chinese Herbal Medicine. Int J Mol Sci. 2015 Oct 9;16(10):23823-48.

[5]. Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis. Exp Ther Med. 2016 Oct;12(4):2735-2740.

[6]. Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer. 2019 Mar 30;18(1):52.

[7]. Shikonin Suppresses NLRP3 and AIM2 Inflammasomes by Direct Inhibition of Caspase-1. PLoS One. 2016 Jul 28;11(7):e0159826.

其他信息
Shikonin is a hydroxy-1,4-naphthoquinone.
Shikonin has been reported in Arnebia decumbens, Arnebia euchroma, and other organisms with data available.
See also: Arnebia guttata root (part of); Arnebia euchroma root (part of); Lithospermum erythrorhizon root (part of).
Mechanism of Action
/Investigators/ previously developed a gene-gun-based in vivo screening system and identified shikonin as a potent suppressor of tumor necrosis factor-alpha (TNF-alpha) gene expression. Here... shikonin selectively inhibits the expression of TNF-alpha at the RNA splicing level. Treatment of lipopolysaccharide-stimulated human primary monocytes and THP-1 cells with shikonin resulted in normal transcriptional induction of TNF-alpha, but unspliced pre-mRNA accumulated at the expense of functional mRNA. This effect occurred with noncytotoxic doses of shikonin and was highly specific, because mRNA production of neither a housekeeping gene nor another inflammatory cytokine gene, interleukin-8 (IL-8), was affected. Moreover, cotreatment with lipopolysaccharide (LPS) and shikonin increased the endpoint protein production of IL-8, accompanied by suppressed activation of the double-stranded RNA-activated protein kinase (PKR) pathway. Because PKR inactivation has been shown to down-regulate the splicing process of TNF-alpha RNA and interfere with translation, our findings suggest that shikonin may achieve differential modulation of cytokine protein expression through inactivation of the PKR pathway and reveal that regulation of TNF-alpha pre-mRNA splicing may constitute a promising target for future anti-inflammatory application.
Shikonin isolated from the roots of the Chinese herb Lithospermum erythrorhizon has been associated with anti-inflammatory properties. /Investigators/ evaluated shikonin's chemotherapeutic potential and investigated its possible mechanism of action in a human cutaneous neoplasm in tissue culture. Shikonin preferentially inhibits the growth of human epidermoid carcinoma cells concentration- and time-dependently compared to SV-40 transfected keratinocytes, demonstrating its anti-proliferative effects against this cancer cell line. Additionally, shikonin decreased phosphorylated levels of EGFR, ERK1/2 and protein tyrosine kinases, while increasing phosphorylated JNK1/2 levels. Overall, shikonin treatment was associated with increased intracellular levels of phosphorylated apoptosis-related proteins, and decreased levels of proteins associated with proliferation in human epidermoid carcinoma cells.
... /A previous study showed/ that shikonin, a natural compound isolated from Lithospermun erythrorhizon Sieb. Et Zucc, inhibits adipogenesis and fat accumulation. This study was conducted to investigate the molecular mechanism of the anti-adipogenic effects of shikonin. Gene knockdown experiments using small interfering RNA (siRNA) transfection were conducted to elucidate the crucial role of beta-catenin in the anti-adipogenic effects of shikonin. Shikonin prevented the down-regulation of beta-catenin and increased the level of its transcriptional product, cyclin D1, during adipogenesis of 3T3-L1 cells, preadipocytes originally derived from mouse embryo. beta-catenin was a crucial mediator of the anti-adipogenic effects of shikonin, as determined by siRNA-mediated knockdown. Shikonin-induced reductions of the major transcription factors of adipogenesis including peroxisome proliferator-activated receptor gamma and CCAAT/enhancer binding protein alpha, and lipid metabolizing enzymes including fatty acid binding protein 4 and lipoprotein lipase, as well as intracellular fat accumulation, were all significantly recovered by siRNA-mediated knockdown of beta-catenin. Among the genes located in the WNT/beta-catenin pathway, the levels of WNT10B and DVL2 were significantly up-regulated, whereas the level of AXIN was down-regulated by shikonin treatment. This study ...shows that shikonin inhibits adipogenesis by the modulation of WNT/beta-catenin pathway in vitro, and also suggests that WNT/beta-catenin pathway can be used as a therapeutic target for obesity and related diseases using a natural compound like shikonin...
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C16H16O5
分子量
288.3
精确质量
288.099
CAS号
517-89-5
相关CAS号
(-)-Alkannin;517-88-4;Alkannin;23444-65-7;(Rac)-Shikonin;54952-43-1
PubChem CID
479503
外观&性状
Brown to reddish brown solid powder
密度
1.4±0.1 g/cm3
沸点
567.4±50.0 °C at 760 mmHg
熔点
147ºC
闪点
311.0±26.6 °C
蒸汽压
0.0±1.6 mmHg at 25°C
折射率
1.642
LogP
4.35
tPSA
94.83
氢键供体(HBD)数目
3
氢键受体(HBA)数目
5
可旋转键数目(RBC)
3
重原子数目
21
分子复杂度/Complexity
501
定义原子立体中心数目
1
SMILES
CC(=CC[C@H](C1=CC(=O)C2=C(C=CC(=C2C1=O)O)O)O)C
InChi Key
NEZONWMXZKDMKF-SNVBAGLBSA-N
InChi Code
InChI=1S/C16H16O5/c1-8(2)3-4-10(17)9-7-13(20)14-11(18)5-6-12(19)15(14)16(9)21/h3,5-7,10,17-19H,4H2,1-2H3/t10-/m1/s1
化学名
5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methylpent-3-enyl]naphthalene-1,4-dione
别名
Tokyo Violet Shikonin
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~125 mg/mL (~433.58 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (7.21 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (7.21 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (7.21 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 30 mg/mL (104.06 mM) in 0.5% CMC-Na/saline water (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.4686 mL 17.3430 mL 34.6861 mL
5 mM 0.6937 mL 3.4686 mL 6.9372 mL
10 mM 0.3469 mL 1.7343 mL 3.4686 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们