规格 | 价格 | 库存 | 数量 |
---|---|---|---|
500mg |
|
||
2g |
|
||
5g |
|
||
10g |
|
||
25g |
|
||
50g |
|
||
Other Sizes |
|
体内研究 (In Vivo) |
scosine (400–800 mg/kg; ip) 显着提高电惊厥阈值 [2]。
|
---|---|
动物实验 |
Animal/Disease Models: Albino Swiss mouse body weight (25-30 g)[2]
Doses: 100 mg/kg, 200 mg/kg, 400 mg/kg, 800 mg/kg Route of Administration: intraperitoneal (ip) injection Experimental Results: in mice MEST In trials, epilepsy thresholds were elevated at doses of 400 mg/kg and 800 mg/kg. |
药代性质 (ADME/PK) |
Metabolism / Metabolites
Sarcosine is metabolized to glycine by the enzyme sarcosine dehydrogenase, while glycine-N-methyl transferase generates sarcosine from glycine. |
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
Sarcosine is an oncometabolite. Sarcosine appears to upregulate the expression of the potent oncoprotein called human epidermal growth factor receptor 2 (HER2/neu) in androgen-dependent prostate cancer cells upon exposure to exogenous sarcosine. Thus, sarcosine may induce prostate cancer progression by increased HER2/neu expression. Toxicity Data NA |
参考文献 | |
其他信息 |
Deliquescent crystals or powder. Has a sweetish taste. (NTP, 1992)
Sarcosine is a N-alkylglycine that is the N-methyl derivative of glycine. It is an intermediate in the metabolic pathway of glycine. It has a role as a glycine transporter 1 inhibitor, a glycine receptor agonist, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a N-alkylglycine, a N-methyl-amino acid and a member of N-methylglycines. It is a conjugate base of a sarcosinium. It is a conjugate acid of a sarcosinate. It is a tautomer of a sarcosine zwitterion. Sarcosine has been investigated for the treatment of Schizophrenia. Sarcosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Sarcosine has been reported in Sarcococca saligna, Drosophila melanogaster, and other organisms with data available. Sarcosine is an amino acid that is an intermediate and byproduct in glycine synthesis and degradation with potential anti-depressant and anti-schizophrenic activities. Sarcosine is a product of dietary consumption of choline and creatine and is rapidly converted into glycine. Oral administration of sarcosine with certain antipsychotics may cause increased glycine concentration in the brain, which may lead to increased NMDA receptor activation and a reduction in symptoms. Sarcosine is the N-methyl derivative of glycine. Sarcosine is metabolized to glycine by the enzyme sarcosine dehydrogenase, while glycine-N-methyl transferase generates sarcosine from glycine. Sarcosine is a natural amino acid found in muscles and other body tissues. In the laboratory it may be synthesized from chloroacetic acid and methylamine. Sarcosine is naturally found in the metabolism of choline to glycine. Sarcosine is sweet to the taste and dissolves in water. It is used in manufacturing biodegradable surfactants and toothpastes as well as in other applications. Sarcosine is ubiquitous in biological materials and is present in such foods as egg yolks, turkey, ham, vegetables, legumes, etc. Sarcosine is formed from dietary intake of choline and from the metabolism of methionine, and is rapidly degraded to glycine. Sarcosine has no known toxicity, as evidenced by the lack of phenotypic manifestations of sarcosinemia, an inborn error of sarcosine metabolism. Sarcosinemia can result from severe folate deficiency because of the folate requirement for the conversion of sarcosine to glycine (Wikipedia). Sarcosine has recently been identified as a biomarker for invasive prostate cancer. It was found to be greatly increased during prostate cancer progression to metastasis and could be detected in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells (A3519). An amino acid intermediate in the metabolism of choline. |
分子式 |
C3H7NO2
|
|
---|---|---|
分子量 |
89.09
|
|
精确质量 |
89.047
|
|
CAS号 |
107-97-1
|
|
相关CAS号 |
Sarcosine-15N;Sarcosine-d3;118685-91-9
|
|
PubChem CID |
1088
|
|
外观&性状 |
White to off-white solid powder
|
|
密度 |
1.1±0.1 g/cm3
|
|
沸点 |
195.1±23.0 °C at 760 mmHg
|
|
熔点 |
208-212 °C (dec.)(lit.)
|
|
闪点 |
71.8±22.6 °C
|
|
蒸汽压 |
0.2±0.8 mmHg at 25°C
|
|
折射率 |
1.431
|
|
LogP |
-0.79
|
|
tPSA |
49.33
|
|
氢键供体(HBD)数目 |
2
|
|
氢键受体(HBA)数目 |
3
|
|
可旋转键数目(RBC) |
2
|
|
重原子数目 |
6
|
|
分子复杂度/Complexity |
52.8
|
|
定义原子立体中心数目 |
0
|
|
InChi Key |
FSYKKLYZXJSNPZ-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C3H7NO2/c1-4-2-3(5)6/h4H,2H2,1H3,(H,5,6)
|
|
化学名 |
2-(methylamino)acetic acid
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: 100 mg/mL (1122.46 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。
请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 11.2246 mL | 56.1230 mL | 112.2460 mL | |
5 mM | 2.2449 mL | 11.2246 mL | 22.4492 mL | |
10 mM | 1.1225 mL | 5.6123 mL | 11.2246 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。