规格 | 价格 | 库存 | 数量 |
---|---|---|---|
1g |
|
||
2g |
|
||
5g |
|
||
10g |
|
||
25g |
|
||
50g |
|
||
Other Sizes |
|
靶点 |
Antioxidant; Nrf-2/HO-1; Microbial Metabolite; Endogenous Metabolite
|
---|---|
体外研究 (In Vitro) |
通过降低 ROS 水平、下调细胞质 Nrf2 表达和上调全细胞 HO-1 表达,吡哆醇显示出其针对 AD 的保护潜力 [1]。
除了降低 ROS 水平、细胞质 Nrf2 表达和全细胞 HO-1 表达外,吡哆醇还具有抗肾上腺素特性 [1]。
吡哆醇是一种水溶性吡啶衍生物。吡哆醇在阿尔茨海默病(AD)细胞模型中的作用及其潜在机制尚不完全清楚。在这项研究中,使用MTT法、蛋白质印迹法和活性氧(ROS)测定法等技术,在AD细胞模型中研究了吡哆醇的抗AD作用。还进行了检测,以确定吡哆醇抗氧化作用的机制。所获得的结果表明,吡哆醇对AD具有保护作用,降低了ROS水平,降低了细胞质Nrf2的表达,上调了全细胞HO-1的表达。这些结果表明,吡哆醇的抗AD作用可能归因于其通过刺激Nrf2/HO-1途径引发的抗氧化特性[1]。 |
体内研究 (In Vivo) |
目的:利奈唑胺常用于治疗耐药性感染。利奈唑胺会引起副作用。迄今为止,同时给予pyridoxine/吡哆醇和利奈唑胺的有效性尚不清楚。在这里,我们研究了吡哆醇对利奈唑胺诱导的大鼠血液毒性、肝毒性和氧化应激的保护作用
材料和方法:将40只雄性幼年Spraque-Dawley大鼠分为4组:对照组、利奈唑胺组、吡哆醇组和利奈唑啉吡啶酮组。在治疗前和治疗后2周,在血液中进行全血细胞计数、肝功能测试以及超氧化物歧化酶、谷胱甘肽过氧化物酶、过氧化氢酶和脂质过氧化的抗氧化酶活性测量 结果:与各自的基线值相比,利奈唑胺组的白细胞和血红蛋白计数降低,丙氨酸氨基转移酶水平升高。与对照组相比,利奈唑啉和利奈唑胺-吡哆醇组治疗后白细胞减少(P<0.001)。与对照组相比,利奈唑啉和利奈唑胺-吡哆醇组的丙氨酸氨基转移酶水平升高(分别为P<0.001和P<0.05)。与对照组相比,利奈唑胺组的超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶和丙二醛水平升高(分别为P<0.001、P<0.05、P<0.001和P<0.001)。与利奈唑胺组相比,利奈唑啉加吡哆醇治疗导致丙二醛水平和超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶活性显著降低(分别为P<0.001、P<0.01、P<0.001和P<0.01) 结论:pyridoxine/吡哆醇可能是预防大鼠利奈唑胺毒性的有效佐剂[2]。 |
动物实验 |
Forty male pediatric Spraque–Dawley rats (8 weeks old, weighing 200-250 g) were divided into 4 groups: control (C, n = 10), linezolid (L, n = 10), pyridoxine (P, n = 10), and linezolid plus pyridoxine (LP, n = 10). For 14 days, by gavage twice a day, 1 mL of saline solution was administered to the C group. In addition, 125 mg/kg/day of linezolid was administered to the L group;100 mg/kg/day of pyridoxine was administered to the P group, and 125 mg/kg/day of linezolid and 100 mg/kg/day of pyridoxine to the LP group.
|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
The B vitamins are readily absorbed from the gastrointestinal tract, except in malabsorption syndromes. Pyridoxine is absorbed mainly in the jejunum. The Cmax of pyridoxine is achieved within 5.5 hours. The major metabolite of pyridoxine, 4-pyridoxic acid, is inactive and is excreted in urine Pyridoxine main active metabolite, pyridoxal 5’-phosphate, is released into the circulation (accounting for at least 60% of circulating vitamin B6) and is highly protein bound, primarily to albumin. Metabolism / Metabolites Pyridoxine is a prodrug primarily metabolized in the liver. The metabolic scheme for pyridoxine is complex, with formation of primary and secondary metabolites along with interconversion back to pyridoxine. Pyridoxine's major metabolite is 4-pyridoxic acid. Hepatic. Half Life: 15-20 days Biological Half-Life The total adult body pool consists of 16 to 25 mg of pyridoxine. Its half-life appears to be 15 to 20 days. |
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
Vitamin B6 is the collective term for a group of three related compounds, pyridoxine (PN), pyridoxal (PL) and pyridoxamine (PM), and their phosphorylated derivatives, pyridoxine 5'-phosphate (PNP), pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP). Although all six of these compounds should technically be referred to as vitamin B6, the term vitamin B6 is commonly used interchangeably with just one of them, pyridoxine. Vitamin B6, principally in its biologically active coenzyme form pyridoxal 5'-phosphate, is involved in a wide range of biochemical reactions, including the metabolism of amino acids and glycogen, the synthesis of nucleic acids, hemogloblin, sphingomyelin and other sphingolipids, and the synthesis of the neurotransmitters serotonin, dopamine, norepinephrine and gamma-aminobutyric acid (GABA). Toxicity Data LD50: 4 gm/kg (oral, rat) |
参考文献 |
|
其他信息 |
Pharmacodynamics
Vitamin B6 (pyridoxine) is a water-soluble vitamin used in the prophylaxis and treatment of vitamin B6 deficiency and peripheral neuropathy in those receiving isoniazid (isonicotinic acid hydrazide, INH). Vitamin B6 has been found to lower systolic and diastolic blood pressure in a small group of subjects with essential hypertension. Hypertension is another risk factor for atherosclerosis and coronary heart disease. Another study showed pyridoxine hydrochloride to inhibit ADP- or epinephrine-induced platelet aggregation and to lower total cholesterol levels and increase HDL-cholesterol levels, again in a small group of subjects. Vitamin B6, in the form of pyridoxal 5'-phosphate, was found to protect vascular endothelial cells in culture from injury by activated platelets. Endothelial injury and dysfunction are critical initiating events in the pathogenesis of atherosclerosis. Human studies have demonstrated that vitamin B6 deficiency affects cellular and humoral responses of the immune system. Vitamin B6 deficiency results in altered lymphocyte differentiation and maturation, reduced delayed-type hypersensitivity (DTH) responses, impaired antibody production, decreased lymphocyte proliferation and decreased interleukin (IL)-2 production, among other immunologic activities. We observed a significant increase in antioxidant enzyme activity and MDA levels in erythrocytes for rats treated with linezolid. Previous studies have shown that antioxidant enzyme activities generally decrease after oxidative damage. However, in our study, MDA levels and antioxidant enzyme activities were increased after the administration of linezolid. This suggested that the antioxidant system was activated to remove free radicals from linezolid. Although membrane damage occurs in erythrocytes, the lack of adequate hemoglobin levels was attributed to the absence of hemolysis. On the other hand, both antioxidant enzymes and MDA levels were not elevated in L and LP groups. These changes induced by pyridoxine have been shown to decrease the free radical production due to linezolid and/or free radicals formed by the help of pyridoxine. The addition of pyridoxine to protect against the side effects of linezolid used in the treatment of gram-positive bacterial infections should be recommended to increase the effectiveness of treatment and prevent complications. Since the hematological toxic effects of linezolid limit its use against multidrug-resistance gram-positive pathogens, we believe that this study will be promising to guide future research. [2] |
分子式 |
C8H11NO3
|
---|---|
分子量 |
169.1778
|
精确质量 |
169.073
|
元素分析 |
C, 56.80; H, 6.55; N, 8.28; O, 28.37
|
CAS号 |
65-23-6
|
相关CAS号 |
Pyridoxine-d5;688302-31-0;Pyridoxine hydrochloride;58-56-0
|
PubChem CID |
1054
|
外观&性状 |
White to off-white solid powder
|
密度 |
1.4±0.1 g/cm3
|
沸点 |
491.9±40.0 °C at 760 mmHg
|
熔点 |
159-162ºC
|
闪点 |
251.3±27.3 °C
|
蒸汽压 |
0.0±1.3 mmHg at 25°C
|
折射率 |
1.621
|
LogP |
-1.1
|
tPSA |
73.58
|
氢键供体(HBD)数目 |
3
|
氢键受体(HBA)数目 |
4
|
可旋转键数目(RBC) |
2
|
重原子数目 |
12
|
分子复杂度/Complexity |
142
|
定义原子立体中心数目 |
0
|
InChi Key |
LXNHXLLTXMVWPM-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C8H11NO3/c1-5-8(12)7(4-11)6(3-10)2-9-5/h2,10-12H,3-4H2,1H3
|
化学名 |
4,5-bis(hydroxymethyl)-2-methylpyridin-3-ol
|
别名 |
pyridoxine; 65-23-6; Pyridoxol; Pyridoxin; 3-hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridine; Adermine; Gravidox; Hydoxin;
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ~100 mg/mL (~591.09 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (12.29 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (12.29 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (12.29 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 5.9109 mL | 29.5543 mL | 59.1086 mL | |
5 mM | 1.1822 mL | 5.9109 mL | 11.8217 mL | |
10 mM | 0.5911 mL | 2.9554 mL | 5.9109 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。