规格 | 价格 | 库存 | 数量 |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
HIF-1α
|
---|---|
体外研究 (In Vitro) |
在含氧量正常的条件下,将 PX-478 应用于表达 HIF-1α 蛋白的 PC3 和 DU 145 细胞 20 小时。 PX-478 对 PC3 细胞的影响大于 DU 145 细胞。根据光密度分析,常氧条件下PC3细胞抑制HIF-1α的IC50为20-25μM,而DU抑制HIF-1α的IC50为40-50μM。在常氧或低氧条件下将不同浓度的 PX-478(10、20、30、40、50 和 60 μM)应用于 PC3 和 DU 145 细胞,持续 18 至 20 小时。在常氧条件下,PC3 细胞比 DU 145 细胞对 PX-478 更敏感。 PC3 细胞 (n=3) 和 DU 145 细胞的克隆形成活力,IC50 值分别为 17 μM 和 35 μM。当细胞在缺氧环境下处理 18 小时时,该药物对 PC3 细胞的半衰期 (IC50) 为 16 μM,对 DU 145 细胞的半衰期为 22 μM。因此,在缺氧环境中,DU 145 细胞更容易受到 PX-478 的影响 [1]。
缺氧诱导因子-1α(HIF-1α)在人类肿瘤中的过表达与不良预后和放射治疗不良结果有关。抑制HIF-1α被认为是癌症治疗中一种有前景的方法。本研究旨在测试一种新型HIF-1α抑制剂PX-478在常氧和缺氧条件下作为放射增敏剂的体外疗效。用PX-478处理PC3和DU 145前列腺癌细胞20小时,在常氧和缺氧条件下测定HIF-1α蛋白水平和克隆细胞存活率。评估了PX-478对细胞周期分布和H2AX组蛋白磷酸化的影响PX-478降低了PC3和DU 145细胞中的HIF-1α蛋白PX-478在两种细胞系中都产生了细胞毒性,在缺氧条件下对DU-145的毒性增强PX-478(20μmol/L)分别以增强因子(EF)1.4和1.56增强常氧和缺氧条件下照射的PC3细胞的放射敏感性。与EF 1.13(常氧)和1.25(缺氧)的PC3细胞相比,该药物在50 mumol/L浓度下抑制HIF-1α和增强DU 145细胞的放射敏感性方面效果较差PX-478在PC3中诱导S/G2M阻滞,但在DU 145细胞中没有。用药物处理PC3和DU 145细胞导致H2AX组蛋白磷酸化,并延长受照射细胞中γH2AX的表达。PX-478目前正在进行口服药物的I期临床试验。尽管增强辐射敏感性的确切机制仍有待确定,但本研究表明PX-478作为临床辐射增强剂具有潜在作用[1]。 研究人员测试了Hif1α抑制可以预防HO的假设。为此,使用了药物PX-478,该药物已被证明可以抑制Hif1α的转录和翻译。损伤后3周(3WLST)对肌腱切开部位来源的细胞进行体外处理,并在缺氧条件下培养,结果显示,用PX-478处理后,Hif1α转录物和软骨生成基因转录物Sox9和Acan(聚集蛋白聚糖)的水平降低(图4A)。此外,PX-478和雷帕霉素(一种之前描述的Hif1α抑制剂)均显著降低了从肌腱分离的间充质细胞产生的Hif1 a,再次证实这些药物会影响未来HO位点局部细胞中的Hif1β水平[2]。 |
体内研究 (In Vivo) |
出生后两周,患有先天性心脏病的 (Nfatc1-Cre/caACVR1fl/fl) 小鼠每隔一天接受 PX-478 治疗。与接受载体治疗的突变小鼠相比,治疗小鼠踝关节的异位骨量显着减少(6.8 mm3 vs. 2.2 mm3,P<0.01)[2]。
研究人员接下来测试了用PX-478治疗是否会降低体内Hif1α的表达和软骨形成,从而抑制HO的整体发展。小鼠接受烧伤/肌腱切开术,随后用PX-478治疗;3周后的组织学评估证实,软骨原基显著减少,通常在3周后出现(图4B)。此外,他们发现损伤后3周Hif1α表达减少(图4C)。与这些数据一致,在PX-478治疗组中,Sox9的表达显著降低(图4C)。此外,用PX-478治疗的烧伤/肌腱切开术小鼠在损伤后5周(4.3 mm3对1.5 mm3,P<0.05)和9周(5.8 mm3对2.3 mm3,P>0.05)的总HO体积显著减少(图4D和E)。最后,如二元分析(是/否:χ2=9.5,P<0.01)和定量比较(0.90 mm3 vs.0.00 mm3,P=0.05)所示,9周后,PX-478治疗完全抑制了“软组织”HO——骨外骨,HO在近端横断肌腱和远端腓肠肌内形成,但远离跟骨。[2] Hif1α的药理学抑制限制了ACVR1组成活性引起的HO。[2] 研究人员接下来在由caACVR1(ACVR1 Q207D)突变表达引起的组成型ACVR1活性模型中证实了这些发现。注射心脏毒素和Ad.cre的caACVR1fl/fl小鼠产生了强大的HO,该模型已被用于研究ACVR1信号传导的抑制剂。用PX-478处理的caACVR1fl/fl小鼠在Ad.cre/cardiotoxin诱导后,根据五色染色显示软骨或骨几乎消除(图5A)。同样,基于免疫染色,Hif1α和Sox9被消除(图5B)。最后,根据二元分析(是/否;χ2=13.6,P<0.001)和定量比较(18.1 mm3对0.01 mm3,P=0.01),微CT分析证实PX-478治疗组完全不存在HO(图5C和D) 最后,从出生起每隔一天给患有先天性HO(Nfatc1 cre/caACVR1fl/fl)的小鼠注射PX-478,持续2周。与用赋形剂治疗的突变小鼠相比,治疗小鼠的踝关节异位骨明显减少(6.8 mm3对2.2 mm3,P<0.01)。 在HO模型中,Hif1α的缺失可防止间充质冷凝的形成。[2] 与Hif1α敲除类似,PX-478和雷帕霉素治疗大大减少了间充质祖细胞的存在和间充质凝结的形成,如H&E染色以及PDGFRα和Sox9免疫染色所示(图8)。 |
细胞实验 |
常氧条件下的克隆细胞存活试验[1]
为了确定PX-478与辐射联合使用的效果,在常氧条件下用药物处理细胞24小时,1小时后照射并铺板。12天后用结晶紫染色菌落,计数>50个细胞的菌落。对于联合治疗,通过校正单独使用PX-478的毒性来计算净存活率。增强因子(EF)是通过将单独用辐射处理细胞时将镀层效率降低到10%所需的辐射剂量除以用PX-478和辐射处理细胞后将镀层效率降至10%所需辐射剂量来计算的。 缺氧治疗[1] 细胞被放置在70-cm2的玻璃烧瓶(用于蛋白质印迹)或小玻璃烧瓶中(用于克隆试验)。第二天,取出培养基,向烧瓶中加入含有或不含有PX-478的新鲜培养基。在常氧条件下与药物孵育18-20小时后,用橡胶塞紧紧密封烧瓶。将两根19号针插入橡胶塞中,以引入缺氧气体混合物并将烧瓶相互连接。在温暖的房间里,用95%氮气和5%二氧化碳的混合物给烧瓶充气1小时,诱导缺氧。1小时充气结束后,取下15,29根针,将橡胶塞密封的烧瓶孵育所需的时间。之前用Thermox探头进行的测量表明,烧瓶中的氧分压<10ppm(0.02%),导致放射性缺氧。 在充气1小时后,通过刮取细胞进行蛋白质印迹分析或胰蛋白酶处理并铺板进行克隆存活分析。对于联合治疗,细胞在常氧下用药物预处理20小时,并如上所述进行1小时充气。在1小时缺氧结束时,在缺氧条件下照射充气细胞,并在1小时内进行克隆形成试验。为了研究缺氧期间用PX-478长期治疗的效果,在一些实验中,在缺氧充气前将PX-478添加到细胞中,并用药物将细胞在低氧条件下维持18小时。对于克隆形成试验,将细胞置于无药物培养基中。 细胞周期分析[1] 用药物处理细胞24小时后,通过碘化丙啶染色,通过流式细胞术分析PX-478对细胞周期分布的影响。对于BrdU染色,将细胞与10μmol/L BrdU一起孵育最后1小时,并按照所述进行处理。31简言之,将细胞胰蛋白酶化,用PBS洗涤,并在70%乙醇中固定过夜。将细胞制成丸粒,通过胃蛋白酶/HCl消化分离细胞核,然后用10mmol/L硼酸盐(pH 8.6)处理以中和酸。然后,如制造商方案所述,用抗BrdU抗体孵育细胞,然后用FITC标记的抗鼠IgG和PI染色孵育。在BD FACSCalibur流式细胞仪上收集细胞周期数据,并使用CellQuest/MOD Fit软件进行分析。 γH2AX免疫荧光染色[1] 将PC3细胞铺在4孔室载玻片(20000个细胞/ml/孔)中,并用PX-478处理。在所需的时间间隔内,通过抽吸药物培养基去除PX-478,然后照射细胞并在无药物培养基中进一步孵育。在6小时和24小时磷酸化组蛋白时,通过免疫荧光染色分析H2AX(γH2AX)病灶,如上所述。32简而言之,细胞用4%多聚甲醛固定,用0.1%NP-40渗透,用5%山羊血清在1%BSA中封闭。细胞用抗磷酸组蛋白H2AX一抗(1:2000)覆盖,在4°C下孵育过夜。用1%BSA洗涤后,用FITC山羊抗兔二抗(1:100)处理细胞1小时,然后在黑暗中进行30分钟DAPI(1μg/mL)染色。盖玻片上涂有防磨溶液。在Leica DMRXA荧光显微镜上检查载玻片。图像由光度计Sensys CCD相机捕获,并导入在Macintosh G3计算机上运行的IP Labs图像分析软件包。对于每种情况,分析了2到3个单独实验中的约70-100个细胞,以确定每个细胞的γH2AX病灶数量。 间充质干细胞的分离与培养。[2] 在野生型小鼠中,从跟骨到腓骨和胫骨汇合处的肌腱横断部位收获小鼠间充质干细胞。将所有组织机械切碎,用胶原酶A和dispase消化,然后铺板。为了测试药物治疗对Hif1α表达的影响,将细胞在含0.5%氧气的缺氧室中培养。在缺氧处理前24小时开始用PX-478(10μM)或雷帕霉素(5μM)进行细胞处理,并在缺氧条件下重新处理24小时。收集蛋白质,用Western blot分析Hif1α和α-微管蛋白。为了测试PX-478处理对软骨生成的影响,将从肌腱分离的细胞在软骨生成分化培养基(PT-3925和PT-4121;龙沙)中培养。所有体外实验均以生物和技术一式三份进行。 |
动物实验 |
Mice bearing MCF-7 human breast cancer, HT-29 colon cancer, PC-3 prostate cancer, DU-145 prostate cancer, OvCar-3 ovarian cancer, A-549 non-small cell lung cancer, SHP-77 small cell lung cancer, and Caki-1 renal cancer, Panc-1, MiaPaCa, or BxPC-3 pancreatic cancer xenografts.
Extraskeletal Bone Models. [2] Burn/tenotomy mice received a 30% TBSA partial-thickness burn on the shaved dorsum followed by left hindlimb Achilles’ tendon transection. The dorsum was burned using a metal block heated to 60 °C in a water bath and applied to the dorsum for 18 s continuously. The tenotomy site was closed with a single 5-0 vicryl stitch placed through the skin only. caAcvr1fl:fl mice received hindlimb cardiotoxin and Ad.cre injection at postnatal day 24. Mice were then killed after 22 d (PX-478) or 15 d (rapamycin). Separate controls were used for each drug treatment to account for differences in the day of killing. Nfatc1-Cre/caAcvr1fl:wt mice were generated by crossing Nfatc1-Cre+ mice with caAcvr1fl:wt mice. Resulting mutants developed extraskeletal bone by postnatal day 4–5. Drug Treatment. [2] Burn/tenotomy or hybrid HO mice were administered PX-478 (100 mg/kg) or rapamycin (5 mg/kg) in PBS solution via intraperitoneal injection. Mice received injections every other day for the duration of the study. Nfatc1-Cre/caACVR1fl:wt mice were administered PX-478 (100 mg/kg) every other day for a total of 2 wk. |
参考文献 |
|
其他信息 |
PX-478 is a small molecule inhibitor of hypoxia inducible factor (HIF)-1 alpha currently in a clinical trial in patients with advanced metastatic cancer and lymphoma. PX-478 was effective in models of both non-small cell lung cancer and small cell lung cancer that express HIF-1 alpha.
HIF-1alpha Inhibitor PX-478 is an orally active small molecule with potential antineoplastic activity. Although its mechanism of action has yet to be fully elucidated, HIF1-alpha inhibitor PX-478 appears to inhibit hypoxia-inducible factor 1-alpha (HIF1A) expression, which may result in decreased expression of HIF1A downstream target genes important to tumor growth and survival, a reduction in tumor cell proliferation, and the induction of tumor cell apoptosis. The inhibitory effect of this agent is independent of the tumor suppressor genes VHL and p53 and may be related to derangements in glucose uptake and metabolism due to inhibition of glucose transporter-1 (Glut-1). Drug Indication Investigated for use/treatment in cancer/tumors (unspecified). Mechanism of Action PX-478 is a novel small molecule compound that inhibits the activity of hypoxia inducible factor (HIF)-1 alpha, a transcription factor that controls the expression of a number of genes important for growth and survival of cancer cells. Genes regulated by HIF-1 alpha contribute to diverse functions including new blood vessel growth (angiogenesis), use of glucose for energy, and protection against apoptosis (programmed cell death). Preclinical data have demonstrated that PX-478 can induce apoptosis in experimental tumor models, as well as the down-regulation of factors which control angiogenesis, such as vascular endothelial growth factor (VEGF). Solid tumors often contain heterogeneous hypoxic area. In addition to diffusion-limited chronic hypoxia in cells that are 100–150 mm away from blood vessels, some tumor cells may also experience perfusion-limited intermittent hypoxia because of intermittent blood supply caused by abnormal tumor vasculature. Our data showed that PX-478, a novel HIF-1α inhibitor, reduced cell survival and enhanced the radiosensitivity of prostate carcinoma cells irradiated under normoxic and hypoxic condition. Furthermore, the increase in radiosensitivity of cells treated with PX-478 under normoxia and then irradiated after 1-hr hypoxia suggests that cells experiencing intermittent hypoxia can also respond to radiation if they were pre-exposed to PX-478. In addition to inhibiting HIF-1α, PX-478 altered cell cycle progression and prolonged expression of γH2AX in irradiated cells. Our data showing enhancement of radiosensitivity of cells irradiated under normoxic as well as under hypoxic condition suggests that PX-478 is a promising radiation modifier. PX-478-induced phosphorylation of histone H2AX suggests that the drug may cause DNA damage indicative of drug toxicity. The major acute toxicity of PX-478 given daily for 5 days to nonimmunodeficient C57BL/6 mice was neutropenia, as described in a preclinical study.13 This drug is now in Phase I clinical trial (PX-478-001 NCT00522652, http://clinicaltrials.gov) making it a potential new agent for approaching hypoxic cells as part of radiation therapy treatment. [1] Pathologic extraskeletal bone formation, or heterotopic ossification (HO), occurs following mechanical trauma, burns, orthopedic operations, and in patients with hyperactivating mutations of the type I bone morphogenetic protein receptor ACVR1 (Activin type 1 receptor). Extraskeletal bone forms through an endochondral process with a cartilage intermediary prompting the hypothesis that hypoxic signaling present during cartilage formation drives HO development and that HO precursor cells derive from a mesenchymal lineage as defined by Paired related homeobox 1 (Prx). Here we demonstrate that Hypoxia inducible factor-1α (Hif1α), a key mediator of cellular adaptation to hypoxia, is highly expressed and active in three separate mouse models: trauma-induced, genetic, and a hybrid model of genetic and trauma-induced HO. In each of these models, Hif1α expression coincides with the expression of master transcription factor of cartilage, Sox9 [(sex determining region Y)-box 9]. Pharmacologic inhibition of Hif1α using PX-478 or rapamycin significantly decreased or inhibited extraskeletal bone formation. Importantly, de novo soft-tissue HO was eliminated or significantly diminished in treated mice. Lineage-tracing mice demonstrate that cells forming HO belong to the Prx lineage. Burn/tenotomy performed in lineage-specific Hif1α knockout mice (Prx-Cre/Hif1α(fl:fl)) resulted in substantially decreased HO, and again lack of de novo soft-tissue HO. Genetic loss of Hif1α in mesenchymal cells marked by Prx-cre prevents the formation of the mesenchymal condensations as shown by routine histology and immunostaining for Sox9 and PDGFRα. Pharmacologic inhibition of Hif1α had a similar effect on mesenchymal condensation development. Our findings indicate that Hif1α represents a promising target to prevent and treat pathologic extraskeletal bone. [2] |
分子式 |
C13H20CL4N2O3
|
---|---|
分子量 |
392.0230
|
精确质量 |
392.022
|
元素分析 |
C, 39.62; H, 5.12; Cl, 35.98; N, 7.11; O, 12.18
|
CAS号 |
685898-44-6
|
相关CAS号 |
685898-44-6 (HCl); 685847-78-3;
|
PubChem CID |
11234794
|
外观&性状 |
Off-white to yellow solid powder
|
LogP |
4.262
|
tPSA |
92.75
|
氢键供体(HBD)数目 |
4
|
氢键受体(HBA)数目 |
4
|
可旋转键数目(RBC) |
8
|
重原子数目 |
22
|
分子复杂度/Complexity |
304
|
定义原子立体中心数目 |
1
|
SMILES |
C1=CC(=CC=C1C[C@@H](C(=O)O)N)[N+](CCCl)(CCCl)[O-].Cl.Cl
|
InChi Key |
GIGCDIVNDFQKRA-LTCKWSDVSA-N
|
InChi Code |
InChI=1S/C13H18Cl2N2O3.2ClH/c14-5-7-17(20,8-6-15)11-3-1-10(2-4-11)9-12(16)13(18)19;;/h1-4,12H,5-9,16H2,(H,18,19);2*1H/t12-;;/m0../s1
|
化学名 |
4-[(2S)-2-amino-2-carboxyethyl]-N,N-bis(2-chloroethyl)benzeneamine oxide;dihydrochloride
|
别名 |
PX478; PX-478; PX 478 dihydrochloride; 685898-44-6; PX-478; PX-478 2HCl; PX478; PX 478; PX-478 HCl; UNII-T23U22X160; (S)-4-(2-amino-2-carboxyethyl)-N,N-bis(2-chloroethyl)aniline oxide dihydrochloride; PX478 HCl;PX478 Hydrochloride;
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: 78 mg/mL (197.9 mM)
Water:78 mg/mL (197.9 mM)
Ethanol: N/A
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 5 mg/mL (12.69 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 50.0 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 5 mg/mL (12.69 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 50.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 5 mg/mL (12.69 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: ≥ 2.5 mg/mL (6.34 mM) (饱和度未知) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 5 中的溶解度: ≥ 2.5 mg/mL (6.34 mM) (饱和度未知) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 6 中的溶解度: ≥ 0.5 mg/mL (1.27 mM) (饱和度未知) in 1% DMSO 99% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 7 中的溶解度: 10% DMSO: 40% PEG300: 5% Tween-80: 45% Saline: ≥ 5 mg/mL (12.7 mM) 配方 8 中的溶解度: 16.67 mg/mL (42.30 mM) in Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶. *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.5509 mL | 12.7545 mL | 25.5089 mL | |
5 mM | 0.5102 mL | 2.5509 mL | 5.1018 mL | |
10 mM | 0.2551 mL | 1.2754 mL | 2.5509 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。