规格 | 价格 | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
靶点 |
TLR-4[2]
|
---|---|
体外研究 (In Vitro) |
细菌脂多糖(LPS)是一种独特而复杂的糖脂,是革兰氏阴性菌外膜的特征性成分。在肠杆菌科的LPS中,核心低聚糖将高度保守的脂质a与抗原O-多糖连接起来。核心寡糖的结构多样性受到其在外膜稳定性中的重要作用所施加的限制,并与高变O-抗原形成对比。沙门氏菌和大肠杆菌K-12中核心低聚糖生物合成的遗传学已成为研究越来越多细菌中LPS和脂质低聚糖的原型。然而,尽管有丰富的知识,但仍有许多悬而未决的问题,目前还没有直接的实验数据来确定许多基因产物的精确作用机制。在这里,我们对大肠杆菌中五种已知核心类型和鼠伤寒沙门氏菌Ra核心类型的主要核心寡糖生物合成基因簇的最新完成序列进行了比较分析,并讨论了相关生物合成途径的理解进展。这些簇的差异反映了外核低聚糖的重要结构变化,并为将功能归因于这些模型簇中的基因提供了基础,而这些簇内的高度保守区域表明了核心内部区域的关键和不可改变的功能[2]。
|
体内研究 (In Vivo) |
青春期是一个重要的发育事件,其特征是大脑的重组和重塑。在这个关键的发育阶段暴露在压力下会对生殖和非生殖行为产生持久的影响。本研究旨在通过检测免疫挑战后的疾病行为、体温变化和血清细胞因子水平,研究免疫反应的年龄和性别差异。还研究了循环性腺激素对免疫反应年龄和性别差异的影响。结果表明,与雌性小鼠相比,雄性小鼠在LPS治疗后表现出更多的疾病行为和更大的体温波动。此外,与青春期雄性小鼠相比,成年雄性小鼠在LPS治疗后表现出更多的疾病行为和更大的体温下降。性腺切除术后,与假手术组相比,青春期和成年男性的体温下降幅度更大、时间更长。性腺切除术并没有消除LPS诱导的体温变化中的性别差异,这表明还有其他因素导致了观察到的差异。LPS处理增加了所有小鼠的细胞因子水平。然而,与青春期小鼠相比,成年小鼠的促炎细胞因子增加更高,而青春期小鼠的抗炎细胞因子增加幅度大于成年小鼠。我们的研究结果有助于更好地理解LPS治疗后急性免疫反应的年龄和性别差异,以及青春期暴露于LPS后行为和脑功能持久改变的可能机制[2]。
|
细胞实验 |
使用人足细胞系(HPC)。将HPCs接种到培养板上,在富含10%FBS、100 U/mL青霉素和100μg/mL链霉素以及ITS的RPMI 1640培养基中培养。HPCs在33°C和5%CO2下培养增殖,然后转移到37°C和5%CO2下分化10-12天。HPCs与或不与不同剂量的LPS、PAN和HG一起孵育不同时间。HPCs在有或没有50μg/mL LPS、75μg/mL PAN、60 mM HG和不同剂量Rac-1抑制剂(EHT 1864)的情况下培养不同时间。此外,将HPCs与动力蛋白抑制剂Dynasore 或blebbistatin博来司他丁一起培养12小时[3]。
|
动物实验 |
Animal/Disease Models:Female and male CD1 mice[2]
Doses: 1.5mg/kg Route of Administration: Intraperitoneal injection, once Experimental Results: Induced sickness behavior in all mice, but adult mice displayed more sickness than pubertal mice and adult males remained sick for a longer period of time than adult females. Caused a decrease in body temperature for all mice, but this decrease was greatest in adult males. Increased pro- and anti-inflammatory cytokines at various levels in pubertal and adult male and female mice, resulted in age and sex differences in cytokine concentrations following immune challenge. Only adult males and females treated with LPS displayed significantly more IL-6 than their saline controls, and pubertal males and females and adult females displayed significantly more IL-10 than their saline controls. All the mice displayed significantly more IL-12 and TNF-α than their saline controls. |
参考文献 |
|
其他信息 |
This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.[1]
Background: Levels of urinary microvesicles, which are increased during various kidney injuries, have diagnostic potential for renal diseases. However, the significance of urinary microvesicles as a renal disease indicator is dampened by the difficulty to ascertain their cell source. Objectives: The aim of this study was to demonstrate that podocytes can release migrasomes, a unique class of microvesicle with size ranging between 400 and 2,000 nm, and the urine level of migrasomes may serve as novel non-invasive biomarker for early podocyte injury. Method: In this study, immunofluorescence labeling, electronic microscopy, nanosite, and sequential centrifugation were used to purify and analyze migrasomes. Results: Migrasomes released by podocytes differ from exosomes as they have different content and mechanism of release. Compared to podocytes, renal tubular cells secrete markedly less migrasomes. Moreover, secretion of migrasomes by human or murine podocytes was strongly augmented during podocyte injuries induced by LPS, puromycin amino nucleoside (PAN), or a high concentration of glucose (HG). LPS, PAN, or HG-induced podocyte migrasome release, however, was blocked by Rac-1 inhibitor. Strikingly, a higher level of podocyte migrasomes in urine was detected in mice with PAN-nephropathy than in control mice. In fact, increased urinary migrasome number was detected earlier than elevated proteinuria during PAN-nephropathy, suggesting that urinary migrasomes are a more sensitive podocyte injury indicator than proteinuria. Increased urinary migrasome number was also detected in diabetic nephropathy patients with proteinuria level <5.5 g/day. Conclusions: Our findings reveal that podocytes release the "injury-related" migrasomes during migration and provide urinary podocyte migrasome as a potential diagnostic marker for early podocyte injury.[3] |
外观&性状 |
Typically exists as White to off-white solid at room temperature
|
---|---|
别名 |
LPS, from bacterial (Klebsiella pneumoniae)
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。