BMS-986224

别名: BMS-986224; 2055200-88-7; N5O33BF03F; UNII-N5O33BF03F; CHEMBL4873876; BMS986224; 2(1H)-Pyridinone,3-(5-((5-chloro-2-pyridinyl)methyl)-1,3,4-oxadiazol-2-yl)- 5-(2,6-dimethoxyphenyl)-6-(ethoxymethyl)-4-hydroxy-; 3-(5-((5-Chloropyridin-2-yl)methyl)-1,3,4-oxadiazol-2-yl)-5-(2,6-dimethoxyphenyl)-6- (ethoxymethyl)pyridine-2,4-diol; BMS986224
目录号: V75304 纯度: ≥98%
BMS-986224 是一种特异性口服生物活性 APJ 受体激动剂 (Kd = 0.3 nM),显示出与 (Pyr1) apelin-13 相似的受体结合和信号传导特征。
BMS-986224 CAS号: 2055200-88-7
产品类别: APJ
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
10mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
产品描述
BMS-986224 是一种特异性口服生物活性 APJ 受体激动剂 (Kd = 0.3 nM),显示出与 (Pyr1) apelin-13 相似的受体结合和信号传导特征。 BMS-986224 可用于研究心力衰竭。
生物活性&实验参考方法
靶点
Kd: 0.3 nM (APJ receptor)[1]
体外研究 (In Vitro)
BMS-986224 对人 APJ 的 EC50 为 0.02 nM,并完全阻断毛喉素介导的 cAMP 合成。中国仓鼠卵巢-K1 或 HEK293 ZF 细胞在 β-arrestin 募集、ERK 磷酸化和 APJ 内化方面对 BMS-986224 (0-100 nM) 完全响应[1]。强效选择性 APJ 受体激动剂 BMS-986224 显示出类似于 (Pyr1) apelin-13[1] 的信号传导谱。
体内研究 (In Vivo)
在 RHR 模型中,BMS-986224(0.192 mg/kg 或 3 mg/kg;SC 输注;每日)通过将每搏输出量和心输出量增加至健康动物中观察到的水平,产生与依那普利不同的效果,但无法预防心脏肥大和纤维化[1]。
酶活实验
GPCR选择性分析[1]
进行GPCR选择性测定以评估BBMS-986224与其他GPCR(腺苷A2A;肾上腺素能α1B、1D、2A和2C,肾上腺素能β1和β2;大麻素CB1;多巴胺D1和D2;组胺H1和H2;毒蕈碱M2;阿片样物质μ和κ;血清素5HT1B、5HT2B和5HT4)相互作用的可能性。如Alt等人所述,进行了这些测定。12使用膜过滤法进行的竞争性放射性配体结合测定用于评估BBMS-986224在来源于细胞过表达单个人类GPCR的膜中竞争放射性配体结合的能力。
放射性配体结合分析[1]
将一系列浓度的BBMS-986224添加到含有[3H]apelin-13的细胞膜提取物中(约2倍的平衡解离常数[Kd])。使用过量未标记的(Pyr1)apelin-13(80 nM)来确定0至120分钟的特异性结合。使用竞争性结合动力学的非线性回归对值进行全局拟合,该回归应用了结合实验中确定的[3H]apelin-13的Kon和Koff约束。使用竞争性放射性配体结合分析来评估BBMS-986224与过表达单个人GPCR的细胞膜中相应放射性配体的结合。
细胞实验
ERK磷酸化[1]
表达人APJ的HEK293 ZF细胞在50μL完全生长培养基中以30000个细胞/孔的速度在384孔聚-D-赖氨酸涂层板上生长和铺板3天。将完整的生长培养基替换为80μL/孔的无血清培养基,以进一步培养过夜。试验化合物[BBMS-986224]在DMSO中连续稀释,并以10-50nL/孔的浓度分配到384孔REMP板中。对于该测定,化合物用50μL HBSS/HEPES/0.1%BSA测定缓冲液进一步稀释。从细胞板中取出培养基,直接向细胞中加入25μL稀释的化合物。在37°C下孵育7分钟后,立即用检测试剂盒中提供的裂解缓冲液裂解细胞并搅拌15分钟。然后将细胞裂解液(4μL/孔)转移到384孔ProxiPlates中,并加入7μL/孔免疫球蛋白G(IgG)检测试剂。在黑暗中孵育2小时后,在EnVision平板阅读器上测量信号。按照cAMP测定所述测定化合物效力。
基于BRET的生物传感器检测1]
用Tyrode缓冲液(137 mM NaCl、1 mM CaCl2、0.9 mM KCl、1 mM MgCl2、3.6 mM NaH2PO4、5.5 mM葡萄糖、12 mM NaHCO3和25 mM HEPES,pH 7.4)洗涤细胞,并向每个孔中加入90μL Tyrode的缓冲液。细胞在室温下在新缓冲液中平衡≥30分钟;然后将10×腔肠素底物(10μL)添加到每个孔中(最终浓度为2μM的紫色腔肠素)。然后将不同浓度的测试化合物(BBMS-986224和(Pyr1)apelin-13)添加到每个孔(HP D300数字分配器;Tecan)中,并在室温下孵育细胞5-15分钟。然后使用BioTek的Synergy Neo多模式阅读器和BRET2BBMS-986224过滤器410/80和515/30收集BRET读数。通过计算GFP(515/30nm)发出的光与Rluc(410/80nm)发射的光的比率来确定BRET信号。使用非刺激对照将BRET信号值转换为激活百分比为0%,(Pyr1)apelin-13最大反应为100%。使用4参数逻辑斯谛方程,利用这些归一化值生成了Sigmoid浓度-响应曲线,以确定不同化合物的EC50。
动物实验
Animal/Disease Models: Male SD (Sprague-Dawley) rats (renal hypertensive rat model)[1]
Doses: 0.192 mg/kg or 3 mg/kg
Route of Administration: SC infusion; daily; Initiated 3 days before surgery and continued for 7 days after surgery
Experimental Results: The achieved steady-state plasma concentrations during 10-day infusion were 102 and 2686 nmol/L at low dose and HD, respectively. At the low dose, BMS-986224 increased SV and CO without affecting other measured parameters, including the measured diastolic parameters, cardiac fibrosis, and heart weight in RHR.
(Pyr1) Apelin-13, BBMS-986224, and Dobutamine: Acute Hemodynamic Analyses in Normal Rats[1]
Following a 10-min equilibration period, vehicle (n=14) or BBMS-986224 (1, 10, or 100 μg/kg/min; n=8, 6, and 7, respectively) was infused intravenously over 15 min (Supplemental Figure I B(i)). We also included dobutamine, a positive inotropic agent, as a comparator. A dose‑escalation and a 15-min IV infusion of 1 μg/kg/min dose of dobutamine was conducted (see Methods and Supplemental Figure IC). Plasma exposures were measured in separate groups of anesthetized and cannulated animals (Supplemental Figure I A(ii) and I B(ii)). Following equilibration (Pyr1) apelin-13 (6 μg/kg/min), BBMS-986224 (1, 10, and 100 μg/kg/min), or vehicle were infused over 15 min (BMS-986224 and vehicle) or 20 min ((Pyr1) apelin-13). Blood samples were collected 5, 10, 20, 22, and 30 min after infusion start for (Pyr1) apelin-13 and 5, 15, 20, and 30 min after infusion start for BMS‑986224 and vehicle. In the (Pyr1) apelin-13 experiments, blood was collected using an optimized blood collection protocol and concentrations subsequently determined using liquid chromatography-tandem mass spectrometry as described previously.[1]
BBMS-986224: Cardiovascular Effects in the Chronic Renal Hypertensive Rat Model[1]
Subcutaneous Drug Administration[1]
For the infusion study, animals were implanted subcutaneously with an osmotic minipump (ALZET® Osmotic Pump Model 2ML2; DURECT Corporation). For the SC infusion, the study arms were BMS-986224 (0.192 mg/kg/day or 3 mg/kg/day, n=15 per dose), vehicle (n=15), enalapril (40 mg/kg/day, n=15), and sham-operated controls (n=10). BBMS-986224, enalapril, or vehicle infusion was initiated 3 days before surgery and continued for 7 days after surgery (Supplemental Figure I D). Key measurements were systolic blood pressure (SBP) in conscious animals on Day 6 via tail cuff (CODA; Kent Scientific Products), and echocardiography (ECHO) of cardiac structure and function (stroke volume [SV], CO, heart rate [HR], LV mass, LV end-diastolic volume [LVEDV] and ejection fraction [EF], and isovolumic relaxation time [IVRT]) on Day 7. Plasma samples were collected at Day 7 for measuring BBMS-986224 and heart failure biomarkers. The experiment was repeated in a larger cohort (n=20 per group).
Oral Drug Administration[1]
BBMS-986224 doses in the twice-daily (BID) study were selected to target a plasma concentration of 200 nM at peak (0.1 mg/kg/day BID) or at trough (1 mg/kg/day BID). In the low-dose once-daily (QD) study, 0.06 mg/kg QD dose was targeted to achieve a peak concentration of 100 nM and 0.2 mg/kg dose to cover an area under the plasma drug concentration–time curve (AUC) 0–24 of 3.4 μM*h. Vehicle was given PO and SC in separate animal groups, and enalapril maleate (40 mg/kg/day) was administered SC. Test compound preparation is described in full in Supplemental Table II. Sham-operated controls were also included. Treatment was initiated 3 days before surgery and continued for 8 days after surgery (Supplemental Figures I E, I F). ECHO was performed at BMS-986224 trough on Day 7 and peak on Day 8. Plasma samples were collected at trough and peak on Day 6 and repeated at peak on Day 8.
参考文献

[1]. In Vitro and In Vivo Evaluation of a Small-Molecule APJ (Apelin Receptor) Agonist, BMS-986224, as a Potential Treatment for Heart Failure. Circ Heart Fail. 2021;14(3):e007351.

其他信息
Background: New heart failure therapies that safely augment cardiac contractility and output are needed. Previous apelin peptide studies have highlighted the potential for APJ (apelin receptor) agonism to enhance cardiac function in heart failure. However, apelin's short half-life limits its therapeutic utility. Here, we describe the preclinical characterization of a novel, orally bioavailable APJ agonist, BMS-986224.

Methods: BMS-986224 pharmacology was compared with (Pyr1) apelin-13 using radio ligand binding and signaling pathway assays downstream of APJ (cAMP, phosphorylated ERK [extracellular signal-regulated kinase], bioluminescence resonance energy transfer-based G-protein assays, β-arrestin recruitment, and receptor internalization). Acute effects on cardiac function were studied in anesthetized instrumented rats. Chronic effects of BMS-986224 were assessed echocardiographically in the RHR (renal hypertensive rat) model of cardiac hypertrophy and decreased cardiac output.

Results: BMS-986224 was a potent (Kd=0.3 nmol/L) and selective APJ agonist, exhibiting similar receptor binding and signaling profile to (Pyr1) apelin-13. G-protein signaling assays in human embryonic kidney 293 cells and human cardiomyocytes confirmed this and demonstrated a lack of signaling bias relative to (Pyr1) apelin-13. In anesthetized instrumented rats, short-term BMS-986224 infusion increased cardiac output (10%-15%) without affecting heart rate, which was similar to (Pyr1) apelin-13 but differentiated from dobutamine. Subcutaneous and oral BMS-986224 administration in the RHR model increased stroke volume and cardiac output to levels seen in healthy animals but without preventing cardiac hypertrophy and fibrosis, effects differentiated from enalapril.

Conclusions: We identify a novel, potent, and orally bioavailable nonpeptidic APJ agonist that closely recapitulates the signaling properties of (Pyr1) apelin-13. We show that oral APJ agonist administration induces a sustained increase in cardiac output in the cardiac disease setting and exhibits a differentiated profile from the renin-angiotensin system inhibitor enalapril, supporting further clinical evaluation of BMS-986224 in heart failure.[1]
Our studies have several limitations. Although BMS-986224 was designed to closely resemble the signaling profile and receptor interaction characteristics of (Pyr1) apelin-13, it is possible that unknown differences between these compounds could limit extrapolation of preclinical findings with BMS-986224 to those seen with apelin peptides in humans. It should also be noted that only male rats were used in our studies. While the sustained effect on CO seen in the RHR model is promising, the mechanism responsible for these changes is not clear, and more studies are needed to assess their relevance to human disease.

In conclusion, we identified a novel, potent, selective, and orally bioavailable small-molecule APJ receptor agonist that recapitulated APJ receptor signaling properties and in vivo cardiovascular effects of endogenous (Pyr1) apelin-13. We showed that increased cardiac function could be sustained in a disease model with prolonged oral administration, supporting further evaluation of BMS-986224 in the clinical setting. Whether the favorable effects of BMS-986224 observed in preclinical models can be translated to human HF remains to be determined.[1]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C24H23CLN4O6
分子量
498.915624856949
精确质量
498.13
CAS号
2055200-88-7
PubChem CID
137106310
外观&性状
Off-white to yellow solid powder
LogP
1.8
tPSA
129
氢键供体(HBD)数目
2
氢键受体(HBA)数目
9
可旋转键数目(RBC)
9
重原子数目
35
分子复杂度/Complexity
812
定义原子立体中心数目
0
SMILES
C1(=O)NC(COCC)=C(C2=C(OC)C=CC=C2OC)C(O)=C1C1=NN=C(CC2=NC=C(Cl)C=C2)O1
InChi Key
AGZKELPIAJYRDT-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H23ClN4O6/c1-4-34-12-15-19(20-16(32-2)6-5-7-17(20)33-3)22(30)21(23(31)27-15)24-29-28-18(35-24)10-14-9-8-13(25)11-26-14/h5-9,11H,4,10,12H2,1-3H3,(H2,27,30,31)
化学名
3-[5-[(5-chloropyridin-2-yl)methyl]-1,3,4-oxadiazol-2-yl]-5-(2,6-dimethoxyphenyl)-6-(ethoxymethyl)-4-hydroxy-1H-pyridin-2-one
别名
BMS-986224; 2055200-88-7; N5O33BF03F; UNII-N5O33BF03F; CHEMBL4873876; BMS986224; 2(1H)-Pyridinone,3-(5-((5-chloro-2-pyridinyl)methyl)-1,3,4-oxadiazol-2-yl)- 5-(2,6-dimethoxyphenyl)-6-(ethoxymethyl)-4-hydroxy-; 3-(5-((5-Chloropyridin-2-yl)methyl)-1,3,4-oxadiazol-2-yl)-5-(2,6-dimethoxyphenyl)-6- (ethoxymethyl)pyridine-2,4-diol;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 20.83 mg/mL (41.75 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (4.17 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (4.17 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.0043 mL 10.0216 mL 20.0433 mL
5 mM 0.4009 mL 2.0043 mL 4.0087 mL
10 mM 0.2004 mL 1.0022 mL 2.0043 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
A Study of BMS-986224 in Healthy Subjects and Heart Failure Patients With Reduced Ejection Fraction
CTID: NCT03281122
Phase: Phase 1
Status: Terminated
Date: 2021-02-25
An Investigational Study to Evaluate Experimental Medication BMS-986224 in Renally Impaired Participants
CTID: NCT03634969
Phase: Phase 1
Status: Completed
Date: 2020-02-25
An Investigational Study to Evaluate the Effect of Rifampin on the Singe Dose of Experimental Medication BMS-986224 in Healthy Participants
CTID: NCT03563950
Phase: Phase 1
Status: Completed
Date: 2018-08-29
相关产品
联系我们