规格 | 价格 | 库存 | 数量 |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
靶点 |
Lactate dehydrogenase A (LDHA)[1]
|
---|---|
体外研究 (In Vitro) |
由于糖酵解增加,葡萄糖消耗增加被称为“瓦伯格效应”,并将癌细胞与健康细胞分开。一种与侵袭性癌症相关的重要糖酵解酶是乳酸脱氢酶 A (LDHA),它也被认为是将丙酮酸转化为乳酸过程中的主要酶 [1]。
|
体内研究 (In Vivo) |
在小鼠中,(R)-GNE-140 (5 mg/kg) 表现出高生物利用度。在之前的枪模拟中,(R)-GNE-140 显示暴露量增加为 50 至 200 mg/kg。
|
细胞实验 |
GNE-140表型LDHA/B在LS174T和B16细胞系中的双重遗传破坏处理[2]
最近,Boudreau等人证明了GNE-140(一种特定的LDHA和LDHB抑制剂)在高度糖酵解的胰腺癌症细胞系(如MiaPaca2)中引起生长停滞的能力。因此,我们很好奇这种抑制剂是否能立即重新激活OXPHOS,并维持WT LS174T和B16细胞系的生存能力和生长。我们用不同浓度的GNE-140处理WT和LDHA/B-DKO细胞,结果显示,10μm的浓度(已知会破坏LDHA和B活性)降低了WT的生长,但没有降低本文报道的两种LDHA/B-DKO细胞系的生长。该长期实验(9至12天)证明了在所用浓度下该化合物没有脱靶作用。此外,我们分析了海马生物分析仪对野生型细胞进行短期GNE-140处理的代谢后果。如图6所示,8,用10μm GNE-140处理E–H,1小时足以表型观察LDHA/B-DKO细胞在抑制糖酵解和OXPHOS再激活方面的作用。因此,DLHA/B-DKO细胞的生长表型不是由遗传破坏的两个步骤中的长期生长选择引起的。这一发现基于遗传和LDHA和LDHB的特异性药理学破坏,有力地证明,在正常缺氧条件下,Warburg效应对体外肿瘤生长是可有可无的。
|
动物实验 |
Mouse Pharmacokinetics Study [1]
The pharmacokinetics of compound 29 ((R)-GNE-140) was evaluated following a single intravenous bolus (IV) dose of 1.0 mg/kg and oral administration (PO) of solution/amorphous suspension at a dose of 5 mg/kg in female CD-1 mice (N=3). The vehicle used for IV administration was 10/50/40 EtOH/PEG400/50mM citrate pH3 (v/v, 10/50/40), and for PO, 0.5% methycellulose:0.2% Tween in water (MCT). Blood samples for the IV dose group were collected at 0.033, 0.25, 1, 2, 4, 6 hours post dose. Blood samples for PO dose groups were collected at 0.25, 0.5, 1, 2, 4, and 6 hours post dose. For the high dose oral PK study at 50, 100, and 200 mg/kg, blood samples were collected at 0.25, 0.5, 1, 2, 4, 6, and 8 hours post dose. Blood samples were centrifuged within 29 minutes of collection, and plasma was harvested. Plasma samples were stored at approximately –70°C until the analysis of the compound concentration by a liquid chromatography/tandem mass spectrometry (LCMS/MS) method. PK parameters were determined by non-compartmental methods using WinNonlin.[2]
|
参考文献 |
|
其他信息 |
Increased glucose consumption distinguishes cancer cells from normal cells and is known as the "Warburg effect" because of increased glycolysis. Lactate dehydrogenase A (LDHA) is a key glycolytic enzyme, a hallmark of aggressive cancers, and believed to be the major enzyme responsible for pyruvate-to-lactate conversion. To elucidate its role in tumor growth, we disrupted both the LDHA and LDHB genes in two cancer cell lines (human colon adenocarcinoma and murine melanoma cells). Surprisingly, neither LDHA nor LDHB knockout strongly reduced lactate secretion. In contrast, double knockout (LDHA/B-DKO) fully suppressed LDH activity and lactate secretion. Furthermore, under normoxia, LDHA/B-DKO cells survived the genetic block by shifting their metabolism to oxidative phosphorylation (OXPHOS), entailing a 2-fold reduction in proliferation rates in vitro and in vivo compared with their WT counterparts. Under hypoxia (1% oxygen), however, LDHA/B suppression completely abolished in vitro growth, consistent with the reliance on OXPHOS. Interestingly, activation of the respiratory capacity operated by the LDHA/B-DKO genetic block as well as the resilient growth were not consequences of long-term adaptation. They could be reproduced pharmacologically by treating WT cells with an LDHA/B-specific inhibitor (GNE-140). These findings demonstrate that the Warburg effect is not only based on high LDHA expression, as both LDHA and LDHB need to be deleted to suppress fermentative glycolysis. Finally, we demonstrate that the Warburg effect is dispensable even in aggressive tumors and that the metabolic shift to OXPHOS caused by LDHA/B genetic disruptions is responsible for the tumors' escape and growth.[1]
A series of trisubstituted hydroxylactams was identified as potent enzymatic and cellular inhibitors of human lactate dehydrogenase A. Utilizing structure-based design and physical property optimization, multiple inhibitors were discovered with <10 μM lactate IC50 in a MiaPaca2 cell line. Optimization of the series led to 29, a potent cell active molecule (MiaPaca2 IC50 = 0.67 μM) that also possessed good exposure when dosed orally to mice.[2] |
分子式 |
C25H23CLN2O3S2
|
---|---|
分子量 |
499.04
|
精确质量 |
498.083
|
元素分析 |
C, 60.17; H, 4.65; Cl, 7.10; N, 5.61; O, 9.62; S, 12.85
|
CAS号 |
1802977-61-2
|
相关CAS号 |
(R)-GNE-140;2003234-63-5;(S)-GNE-140;2003234-64-6
|
PubChem CID |
118384725
|
外观&性状 |
White to off-white solid powder
|
密度 |
1.4±0.1 g/cm3
|
沸点 |
739.0±60.0 °C at 760 mmHg
|
闪点 |
400.7±32.9 °C
|
蒸汽压 |
0.0±2.4 mmHg at 25°C
|
折射率 |
1.699
|
LogP |
3.84
|
tPSA |
112
|
氢键供体(HBD)数目 |
1
|
氢键受体(HBA)数目 |
6
|
可旋转键数目(RBC) |
5
|
重原子数目 |
33
|
分子复杂度/Complexity |
714
|
定义原子立体中心数目 |
0
|
InChi Key |
GLDDJXYFHWRGPI-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C25H23ClN2O3S2/c26-20-3-1-2-4-22(20)33-23-21(29)15-25(27-24(23)30,18-9-14-32-16-18)17-5-7-19(8-6-17)28-10-12-31-13-11-28/h1-9,14,16,23H,10-13,15H2,(H,27,30)
|
化学名 |
3-(2-chlorophenyl)sulfanyl-6-(4-morpholin-4-ylphenyl)-6-thiophen-3-ylpiperidine-2,4-dione
|
别名 |
GNE-140 (racemate); 1802977-61-2; GNE-140 racemate; CHEMBL3335792; 3-(2-chlorophenyl)sulfanyl-6-(4-morpholin-4-ylphenyl)-6-thiophen-3-ylpiperidine-2,4-dione; 3-[(2-chlorophenyl)sulfanyl]-6-[4-(morpholin-4-yl)phenyl]-6-(thiophen-3-yl)piperidine-2,4-dione; GNE140; SCHEMBL17100418;
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: 20 mg/mL (40.08 mM)
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0038 mL | 10.0192 mL | 20.0385 mL | |
5 mM | 0.4008 mL | 2.0038 mL | 4.0077 mL | |
10 mM | 0.2004 mL | 1.0019 mL | 2.0038 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。