PF-8380

别名: PF-8380; PF 8380; PF8380; 1144035-53-9; 3,5-Dichlorobenzyl 4-(3-oxo-3-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yl)propyl)piperazine-1-carboxylate; (3,5-Dichlorophenyl)methyl 4-[3-oxo-3-(2-oxo-2,3-dihydro-1,3-benzoxazol-6-yl)propyl]piperazine-1-carboxylate; T582DIM5A4; 1-Piperazinecarboxylic acid, 4-[3-(2,3-dihydro-2-oxo-6-benzoxazolyl)-3-oxopropyl]-, (3,5-dichlorophenyl)methyl ester; UNII-T582DIM5A4; 4-[3-氧代-3-(2-氧代-2,3-二氢苯并恶唑-6-基)丙基]哌嗪-1-羧酸 3,5-二氯苄酯
目录号: V3378 纯度: ≥98%
PF-8380 是一种新型、强效、特异性的自分泌运动因子 (ATX) 抑制剂,在分离酶测定中的 IC50 为 2.8 nM,在人全血中的 IC50 为 101 nM。
PF-8380 CAS号: 1144035-53-9
产品类别: PDE
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of PF-8380:

  • PF-8380 HCl
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
PF-8380 是一种新型、有效、特异性的自分泌运动因子 (ATX) 抑制剂,在分离酶测定中的 IC50 为 2.8 nM,在人全血中的 IC50 为 101 nM。 PF-8380 具有良好的口服生物利用度和自分泌运动因子抑制体内测试所需的暴露量。 PF-8380 对 ATX 的抑制导致 GBM 细胞的侵袭减少并增强放射敏感性。辐射诱导的 Akt 激活可通过抑制 ATX 来消除。此外,ATX 的抑制导致肿瘤血管供应减少并延迟肿瘤生长。这些结果表明,抑制 ATX 可能会改善 GBM 对放疗的反应。多形性胶质母细胞瘤 (GBM) 是一种侵袭性原发性脑肿瘤,具有放射抗性,尽管进行了积极的手术、化疗和放疗,但仍会复发。自分泌运动因子 (ATX) 在包括 GBM 在内的多种癌症中过度表达,并与肿瘤进展、侵袭和血管生成有关。
生物活性&实验参考方法
靶点
Autotaxin (IC50 = 2.8 nM)
体外研究 (In Vitro)
此外,PF-8380 还能抑制大鼠自分泌运动因子(FS-3 的底物),IC50 为 1.16 nM。当胎儿成纤维细胞产生的酶与作为底物的溶血磷脂酰胆碱 (LPC) 结合时,PF-8380 的功效保持不变。当用 PF-8380 以 101 nM 的 IC50 处理人全血两小时时,自分泌运动因子受到抑制 [1]。溶血磷脂酶 D (lysoPLD) 活性由自分泌运动因子 (ATX) 发挥作用,该酶催化溶血磷脂酰胆碱 (LPC) 转化为溶血磷脂酸 (LPA)。对 GL261 和 U87-MG 细胞应用 1 μM PF-8380 作为预处理后,将它们暴露于 4 Gy 的辐射下,导致克隆存活率下降,迁移减少(GL261 中为 33%;P=0.002 和 17.9%) U87-MG 中;P=0.012),侵袭减少(GL261 中 35.6%;P=0.0037;U87-MG 中 31.8%;P=0.002),并减弱辐射诱导的 Akt 磷酸化 [2]。
体内研究 (In Vivo)
PF-8380 的药代动力学特性在 24 小时内以 1 mg/kg 静脉注射剂量和 1 至 100 mg/kg 口服剂量进行评估。 PF-8380的有效t1/2为1.2小时,稳态分布体积为3.2L/kg,平均清除率为31mL/min/kg。口服生物利用度中等,范围为 43% 至 83%。随着单次口服剂量的增加,血浆浓度也会升高;然而,Cmax的增加速率小于与10至100mg/kg的剂量成比例,但与1至10mg/kg的剂量大致成比例。高达 100 mg/kg 时,PF-8380 的暴露大致与剂量成比例且呈线性,如曲线下面积所示。采集后立即检测血浆 C16:0、C18:0 和 C20:0 LPA 的量。使用 3 mg/kg 剂量时,LPA 水平最大下降出现在 0.5 小时,24 小时内,所有 LPA 均恢复至或超过基线 [1]。使用 10 mg/kg PF-8380 治疗后,肿瘤相关血管分布适度增加 20%(P=0.497)。在 4 Gy 照射前 45 分钟,PF-8380 治疗使接受治疗的小鼠的血管分布与对照组相比减少了约 48% (P=0.031),而仅接受放射治疗的小鼠则减少了 65% (P=0.011)[2]。
酶活实验
ATX ELISA和ATX活性测定。[3]
BOS和非BOS细胞系在60mm培养皿中培养直至融合。细胞用PBS洗涤一次,然后血清饥饿24小时。收集无血清上清液,并根据制造商的方案用人ENPP-2/Autotaxin Quantikine ELISA试剂盒测量ATX水平。使用SpectraMax M3多模式微孔板读数器测量450nm处的吸光度。对于ATX活性,收集细胞上清液,在4°C下以17000 g离心10分钟,以沉淀漂浮的细胞或碎片,并用带Ultracel-3膜的Amicon Ultra-4离心过滤器浓缩至原始体积的八分之一。在测量蛋白质浓度后,用荧光磷脂ATX底物FS-3对等量的总蛋白质进行ATX活性测定。简而言之,将30μl上清液和40μl FS-3溶液(含有5μM FS-3、140 mM NaCl、5 mM KCl、1 mM CaCl2、1 mM MgCl2、50 mM Tris-HCl pH 8.0和1 mg/ml BSA)混合并装载到Costar 96孔黑色壁透明底板上。分别在485nm和528nm的激发和发射波长下,使用SpectraMax M3多模微孔板读数器测量样品的荧光。 对于肺裂解物中的ATX活性测定,将20μl同种异体裂解物和40μl FS-3溶液混合,并对安慰剂和PF-8380治疗的肺同种异体移植物进行类似的ATX活动测定。
细胞实验
共培养克隆存活试验[2]
将HUVEC(1.0×106)和bEnd.3细胞(1.0×10^6)铺在100mm板上,24小时后,将U87-MG(2×10^7)和GL261(2×106)细胞铺在transwell插入物上。共培养24小时后,在用0、2、4、6或8 Gy照射之前,用1μM的PF-8380或载体对照DMSO处理细胞45分钟。与PF-8380或DMSO共培养处理后,将计算出的U87-MG和GL261细胞数量进行铺板,以使铺板效率正常化。孵育7至10天后,用70%乙醇固定平板,并用1%亚甲基蓝染色。通过在显微镜下观察平板,对由>50个细胞组成的菌落进行计数。存活分数计算为(集落数/铺板细胞数)/(相应对照的集落数除以铺板细胞数来)。通过对计算D0和n的α/β模型进行曲线拟合来分析生存曲线。
细胞迁移的伤口愈合/划痕分析[2]
将GL261或U87-MG细胞一式三份铺在6cm的板上,并使其生长至70%融合。用无菌200μL移液管尖端刮擦半融合细胞层,以形成没有细胞的划痕,并用PBS洗涤平板一次,以去除非粘附细胞和碎片。对于放射增敏药物研究,在用4 Gy照射之前,用1μMPF-8380或DMSO处理细胞45分钟,然后在37°C的5%CO2中孵育。监测对照板的细胞迁移(20-24小时)。细胞用70%乙醇固定,用1%亚甲基蓝染色。为了量化迁移,对划痕区域中三个随机选择的高功率场(HPF)中的细胞进行计数,并对周围细胞密度进行归一化。计算每个治疗组的平均值和标准误差。
肿瘤经口侵袭试验[2]
肿瘤经口基质凝胶侵袭试验以前曾用于帮助定量肿瘤与内皮的相互作用和转移。GL261(1.0×106个细胞/孔)或U87-MG(0.6×106个电池/孔)悬浮在无血清培养基中,并加入到带有8μm孔的基质涂层聚碳酸酯膜过滤器的上室(插入物)中。将500微升新鲜培养基加入底部腔室。对于放射增敏药物研究,在用4 Gy照射之前,两个腔室都用载体DMSO或1μMPF-8380处理45分钟。36小时后,用湿棉签去除膜插入物上腔室中的剩余细胞。将粘附在穿过基质凝胶侵入的transwell插入膜外表面上的细胞用100%甲醇固定并染色。使用Image J软件对每个样本的7-10个HPF中的侵袭细胞进行计数,并计算每个HPF中侵袭细胞的平均数量。计算每个治疗组的平均值和标准误差。
动物实验
Mice, treatment, and tumor growth delay [2]
All animal procedures used in this study were approved by IACUC. Handling of animals and housing was followed as per DCM guidelines. GL261 cells (1 × 106) were injected into the right hind limb of nude mice. Once tumors were palpable the mice were serpentine sorted into groups of six to seven animals representing similar distributions of tumor sizes (range = 240 mm3). Tumor bearing mice were injected intraperitoneally with vehicle (DMSO) or PF-8380 at 10 mg/kg body weight once daily for five consecutive days. Forty five minutes after drug injection, mice were anesthetized with isoflurane and positioned in the RS2000 irradiator. They were then irradiated with 2 Gy daily for five consecutive days for a total of 10 Gy. Lead blocks (10 mm thick) were used to shield the head, thorax, and abdomen. Tumor size was monitored longitudinally using an external traceable digital caliper.
Oral gavage was performed in a containment room of the animal facility. PF-8380 and AM095 were dissolved in PEG 400 at a concentration of 6 mg/ml. Body weights of animals were measured daily. Treatment with PF-8380 or AM095 was administered by oral gavage twice daily at a dosage of 30 mg/kg body weight starting from day 14 after lung transplantation. Placebo-treated mice were given vehicle (PEG 400) via oral gavage ingestion. On day 40 after lung transplantation, mice were sacrificed, and lung allografts were harvested for Western blotting, hydroxyproline assay, or immunohistochemistry.
参考文献

[1]. A novel autotaxin inhibitor reduces lysophosphatidic acid levels in plasma and the site of inflammation. J Pharmacol Exp Ther. 2010 Jul;334(1):310-7.

[2]. Autotaxin Inhibition with PF-8380 Enhances the Radiosensitivity of Human and Murine Glioblastoma Cell Lines. Front Oncol. 2013 Sep 17;3:236.

[3]. Autocrine lysophosphatidic acid signaling activates β-catenin and promotes lung allograft fibrosis. J Clin Invest. 2017 Apr 3;127(4):1517-1530.

其他信息
Autotaxin is the enzyme responsible for the production of lysophosphatidic acid (LPA) from lysophosphatidyl choline (LPC), and it is up-regulated in many inflammatory conditions, including but not limited to cancer, arthritis, and multiple sclerosis. LPA signaling causes angiogenesis, mitosis, cell proliferation, and cytokine secretion. Inhibition of autotaxin may have anti-inflammatory properties in a variety of diseases; however, this hypothesis has not been tested pharmacologically because of the lack of potent inhibitors. Here, we report the development of a potent autotaxin inhibitor, PF-8380 [6-(3-(piperazin-1-yl)propanoyl)benzo[d]oxazol-2(3H)-one] with an IC(50) of 2.8 nM in isolated enzyme assay and 101 nM in human whole blood. PF-8380 has adequate oral bioavailability and exposures required for in vivo testing of autotaxin inhibition. Autotaxin's role in producing LPA in plasma and at the site of inflammation was tested in a rat air pouch model. The specific inhibitor PF-8380, dosed orally at 30 mg/kg, provided >95% reduction in both plasma and air pouch LPA within 3 h, indicating autotaxin is a major source of LPA during inflammation. At 30 mg/kg PF-8380 reduced inflammatory hyperalgesia with the same efficacy as 30 mg/kg naproxen. Inhibition of plasma autotaxin activity correlated with inhibition of autotaxin at the site of inflammation and in ex vivo whole blood. Furthermore, a close pharmacokinetic/pharmacodynamic relationship was observed, which suggests that LPA is rapidly formed and degraded in vivo. PF-8380 can serve as a tool compound for elucidating LPA's role in inflammation. [1]
Purpose: Glioblastoma multiforme (GBM) is an aggressive primary brain tumor that is radio-resistant and recurs despite aggressive surgery, chemo, and radiotherapy. Autotaxin (ATX) is over expressed in various cancers including GBM and is implicated in tumor progression, invasion, and angiogenesis. Using the ATX specific inhibitor, PF-8380, we studied ATX as a potential target to enhance radiosensitivity in GBM. Methods and materials: Mouse GL261 and Human U87-MG cells were used as GBM cell models. Clonogenic survival assays and tumor transwell invasion assays were performed using PF-8380 to evaluate role of ATX in survival and invasion. Radiation dependent activation of Akt was analyzed by immunoblotting. Tumor induced angiogenesis was studied using the dorsal skin fold model in GL261. Heterotopic mouse GL261 tumors were used to evaluate the efficacy of PF-8380 as a radiosensitizer. Results: Pre-treatment of GL261 and U87-MG cells with 1 μM PF-8380 followed by 4 Gy irradiation resulted in decreased clonogenic survival, decreased migration (33% in GL261; P = 0.002 and 17.9% in U87-MG; P = 0.012), decreased invasion (35.6% in GL261; P = 0.0037 and 31.8% in U87-MG; P = 0.002), and attenuated radiation-induced Akt phosphorylation. In the tumor window model, inhibition of ATX abrogated radiation induced tumor neovascularization (65%; P = 0.011). In a heterotopic mouse GL261 tumors untreated mice took 11.2 days to reach a tumor volume of 7000 mm(3), however combination of PF-8380 (10 mg/kg) with irradiation (five fractions of 2 Gy) took more than 32 days to reach a tumor volume of 7000 mm(3). Conclusion: Inhibition of ATX by PF-8380 led to decreased invasion and enhanced radiosensitization of GBM cells. Radiation-induced activation of Akt was abrogated by inhibition of ATX. Furthermore, inhibition of ATX led to diminished tumor vascularity and delayed tumor growth. These results suggest that inhibition of ATX may ameliorate GBM response to radiotherapy. [2]
Tissue fibrosis is the primary cause of long-term graft failure after organ transplantation. In lung allografts, progressive terminal airway fibrosis leads to an irreversible decline in lung function termed bronchiolitis obliterans syndrome (BOS). Here, we have identified an autocrine pathway linking nuclear factor of activated T cells 2 (NFAT1), autotaxin (ATX), lysophosphatidic acid (LPA), and β-catenin that contributes to progression of fibrosis in lung allografts. Mesenchymal cells (MCs) derived from fibrotic lung allografts (BOS MCs) demonstrated constitutive nuclear β-catenin expression that was dependent on autocrine ATX secretion and LPA signaling. We found that NFAT1 upstream of ATX regulated expression of ATX as well as β-catenin. Silencing NFAT1 in BOS MCs suppressed ATX expression, and sustained overexpression of NFAT1 increased ATX expression and activity in non-fibrotic MCs. LPA signaling induced NFAT1 nuclear translocation, suggesting that autocrine LPA synthesis promotes NFAT1 transcriptional activation and ATX secretion in a positive feedback loop. In an in vivo mouse orthotopic lung transplant model of BOS, antagonism of the LPA receptor (LPA1) or ATX inhibition decreased allograft fibrosis and was associated with lower active β-catenin and dephosphorylated NFAT1 expression. Lung allografts from β-catenin reporter mice demonstrated reduced β-catenin transcriptional activation in the presence of LPA1 antagonist, confirming an in vivo role for LPA signaling in β-catenin activation.[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C22H21CL2N3O5
分子量
478.3252
精确质量
477.085
元素分析
C, 55.24; H, 4.43; Cl, 14.82; N, 8.78; O, 16.72
CAS号
1144035-53-9
相关CAS号
PF-8380 hydrochloride;2070015-01-7
PubChem CID
25265312
外观&性状
White to light brown solid powder
密度
1.4±0.1 g/cm3
折射率
1.616
LogP
3.63
tPSA
95.85
氢键供体(HBD)数目
1
氢键受体(HBA)数目
6
可旋转键数目(RBC)
7
重原子数目
32
分子复杂度/Complexity
693
定义原子立体中心数目
0
SMILES
ClC1C([H])=C(C([H])=C(C=1[H])C([H])([H])OC(N1C([H])([H])C([H])([H])N(C([H])([H])C([H])([H])C(C2C([H])=C([H])C3=C(C=2[H])OC(N3[H])=O)=O)C([H])([H])C1([H])[H])=O)Cl
InChi Key
JMSUDQYHPSNBSN-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H21Cl2N3O5/c23-16-9-14(10-17(24)12-16)13-31-22(30)27-7-5-26(6-8-27)4-3-19(28)15-1-2-18-20(11-15)32-21(29)25-18/h1-2,9-12H,3-8,13H2,(H,25,29)
化学名
3,5-dichlorobenzyl 4-(3-oxo-3-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yl)propyl)piperazine-1-carboxylate
别名
PF-8380; PF 8380; PF8380; 1144035-53-9; 3,5-Dichlorobenzyl 4-(3-oxo-3-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yl)propyl)piperazine-1-carboxylate; (3,5-Dichlorophenyl)methyl 4-[3-oxo-3-(2-oxo-2,3-dihydro-1,3-benzoxazol-6-yl)propyl]piperazine-1-carboxylate; T582DIM5A4; 1-Piperazinecarboxylic acid, 4-[3-(2,3-dihydro-2-oxo-6-benzoxazolyl)-3-oxopropyl]-, (3,5-dichlorophenyl)methyl ester; UNII-T582DIM5A4;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~100 mg/mL (~209.06 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 0.67 mg/mL (1.40 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 6.7 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 0.67 mg/mL (1.40 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 6.7mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 0.67 mg/mL (1.40 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 6.7 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 10 mg/mL (20.91 mM) in 50% PEG300 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.0906 mL 10.4530 mL 20.9061 mL
5 mM 0.4181 mL 2.0906 mL 4.1812 mL
10 mM 0.2091 mL 1.0453 mL 2.0906 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • PF-8380


    Inhibition of ATX reduces Akt Phosphorylation in GBM cells grown in co-culture.2013 Sep 17;3:236.

  • PF-8380


    Inhibition of ATX abrogates radiation induced tumor neovascularization.2013 Sep 17;3:236.

  • PF-8380


    Inhibition of ATX in combination with irradiation delays tumor growth in a heterotopic tumor model of GL261.2013 Sep 17;3:236.

相关产品
联系我们