规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
靶点 |
Adenosine deaminase (Ki = 2.5 pM)
|
---|---|
体外研究 (In Vitro) |
对于HLA相同和不相同(5/6)的同种异基因HCT,使用ECP、Pentostatin 和600 cGy TBI的联合方案,Miller等人观察到,Pentostatin 和ECP都会导致T细胞和宿主DC耗竭,并使剩余的DC和T细胞群转变为耐受性DC2和T调节群,从而导致GVHD发生率低。[1]
本研究旨在通过实验性感染伊氏锥虫的小鼠,评估3'-脱氧腺苷(虫草素)联合脱氧辅酶霉素(Pentostatin :腺苷脱氨酶抑制剂)在体外治疗的抗锥虫作用。在体外,观察到虫草素对寄生虫具有剂量依赖性的杀锥虫作用[2]。 |
体内研究 (In Vivo) |
喷司他丁 (2 mg/kg) 联合虫草素 (2 mg/kg) 对伊氏锥虫感染的小鼠有 100% 的效果。一些生化参数,尤其是肝酶水平的升高,伴随着肝脏和肾脏的组织学病变。喷司他丁单独对感染群体没有作用。所有犬均从第 4 天开始出现粒细胞减少症,粒细胞计数 <500 个细胞/μL。血小板减少症(<20,000 个血小板/μL)在 HCT 后第 7 天开始,最低为 3000 至 14000 个血小板/μL [1]。
在体内试验中,这两种药物分别使用和不同剂量的组合使用。单独使用这些药物对感染的小鼠没有疗效。然而,虫草素(2 mg kg-1)和戊唑醇(2 mg kg-1)的组合在伊氏锥虫感染组中是100%有效的。一些生化参数水平升高,特别是肝酶,伴有肝脏和肾脏的组织学病变。基于这些结果,我们得出结论,使用3'-脱氧腺苷与脱氧辅酶霉素的联合治疗对感染伊氏锥虫的小鼠具有疗效。然而,所测试的治疗方案导致了肝肾损伤,表现为肝毒性和肾毒性[2]。 体外光凝术(ECP)和嘌呤类似物Pentostatin 具有强大的免疫调节作用。我们评估了在用920 cGy TBI预处理后,在无关犬白细胞Ag错配造血细胞移植的犬模型中使用这些治疗方式预防GVHD的效果。我们之前在该模型中表明,36/40只狗在移植后仅接受MTX作为免疫抑制移植,40只狗中有25只患有严重的GVHD,中位生存期为21天。在目前的研究中,9只狗接受了920 cGy TBI的预处理和移植后MTX,或在-2至-1天单独使用ECP(n=5),或在-6和-5天使用ECP联合两剂Pentostatin (-4至-3天)(n=4)。九只狗中有七只成功植入。六只狗出现了严重的急性移植物抗宿主病(单独使用ECP组有四只,使用Pentostatin /戊司他丁和ECP组两只)。与历史对照犬相比,我们未能证明ECP和Pentostatin 对预防GVHD的积极影响[1]。 |
细胞实验 |
混合白细胞培养(MLC)和自然杀伤(NK)细胞毒性试验[1]
如前所述,使用混合白细胞培养来评估ECP前后狗的细胞免疫功能。为了评估ECP前后NK细胞活性,如前所述进行了铬释放测定。 嵌合体分析[1] 使用基于聚合酶链式反应(PCR)的多态性(CA)n二核苷酸重复的检测方法,使用对信息性微卫星标记特异的引物,评估供体和宿主细胞的嵌合体。提取感兴趣细胞的基因组DNA,并在先前描述的条件下进行PCR。所使用的技术能够检测2.5%至97.5%的供体细胞嵌合体。 Annexin V(Ax)/PI染色检测细胞凋亡[1] 使用Annexin V结合通过流式细胞术评估暴露于ECP的细胞的凋亡,这允许检测凋亡细胞细胞表面上的磷脂酰丝氨酸。简而言之,在37°C的5%加湿气氛中孵育过夜后,根据制造商手册收获细胞,裂解,用PBS洗涤,并用Annexin V-FITC和碘化丙啶(PI)孵育。使用CellQuest Analysis软件通过流式细胞术分析细胞。每个样本至少统计了10000个事件。膜联蛋白V阳性但PI阴性的细胞处于早期凋亡,膜联蛋白Ⅴ和PI双重阳性的细胞处于晚期凋亡。结果以膜联蛋白V-FITC阳性细胞的百分比报告。 |
动物实验 |
DLA-nonidentical marrow grafts [1]
All recipient dogs were conditioned for transplantation by 920 cGy TBI at 7 cGy/minute using a linear accelerator. Dogs in group A1 received ECP administered on days −2 and −1 with TBI on day 0 and dogs in group A2 received ECP on days −6 and −5, intravenous (IV) infusion of pentostatin at a dose of 4mg/m2 on days −4 and −3, and TBI on day 0 (Table 1). Donor marrow cells from DLA-nonidentical donors were aspirated under general anesthesia through needles inserted into humeri and femora and stored in heparinized tissue culture medium at 4°C for no more than 6 hours.22 Within 4 hours of TBI, harvested marrow cells were infused IV into recipients at a median dose of 2.9 (range, 1.9 to 6.1) ×108 total nucleated cells (TNC)/kg. The day of marrow grafting was designated as day 0. In addition to marrow graft, recipients were given IV infusions of peripheral blood buffy coat cells obtained by leukapheresis from the marrow donor on days 1 and 2, at a median dose of 2.3 (range, 1.2 to 6.9) ×108 TNC/kg to ensure consistent hematopoietic engraftment. MTX, at a dose of 0.4 mg/kg intravenously was used as postgrafting immunosuppression and administered on days +1, +3, +6 and +11, then weekly thereafter until day 102. |
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Not absorbed orally, crosses blood brain barrier. In man, following a single dose of 4 mg/m2 of pentostatin infused over 5 minutes, approximately 90% of the dose was excreted in the urine as unchanged pentostatin and/or metabolites as measured by adenosine deaminase inhibitory activity. 68 mL/min/m2 Plasma concentrations of pentostatin following direct iv injection of 0.25 mg/kg daily for 4 or 5 days in a limited number of patients with advanced, refractory cancer ranged from approximately 3.2-9.7 ng/ml. Plasma concentrations appear to increase linearly with dose; in a study in patients with leukemia, plasma pentostatin concentrations determined 1 hour after administration of 0.25 or 1 mg/kg of the drug as a 30 min iv infusion averaged approximately 0.4 or 1.26 ug/ml, respectively. No apparent correlation has been documented between mean or absolute plasma adenosine or deoxyadenosine concentrations and therapeutic or toxic responses to pentostatin; however, limited data suggest that there may be a correlation between response to the drug and the ratio of deoxyadenosine triphosphate to adenosine triphosphate in lymphoblasts. In addition, increases in plasma deoxyadenosine reportedly parallel the accumulation of deoxyadenosine triphosphate in erythrocytes and lymphoblasts, and there appears to be a correlation between toxicity and the ratio of deoxyadenosine triphosphate to adenosine triphosphate in erythrocytes. Studies in animals indicate that pentostatin distributes rapidly to all body tissues, but the extent of drug accumulation in different tissues appears to vary among species. Following intraperitoneal injection in mice, the highest concentrations of the drug were found in the kidneys, liver, and spleen. In dogs, pentostatin tissue concentrations following iv administration were proportional to tissue adenosine deaminase activity, with the highest concentrations in the lungs, spleen, pancreas, heart, liver, and jejunum. Pentostatin reportedly enters erythrocytes via a facilitated transport system common to other nucleosides or by simple diffusion; efflux of the drug from cells has not been characterized, although the time course of pentostatin's effects (eg, adenosine deaminase inhibition) varies among different types of cells (eg, lymphocytes, erythrocytes). Limited data in animals and humans indicate that pentostatin distributes relatively poorly into CSF, with peak CSF concentrations averaging approximately 10% of concurrent plasma concentrations. In a 6 yr old leukemia patient receiving pentostatin 0.25 mg/kg daily for 3 successive days by direct iv injection, serum and CSF (via lumbar puncture) pentostatin concentrations 4 hr after the initial dose were approximately 147 and 19 ng/ml, respectively, using an enzyme-inhibition titration assay; one hour after the third dose, corresponding serum and CSF concentrations were approximately 241 and 35 ng/ml, respectively. For more Absorption, Distribution and Excretion (Complete) data for PENTOSTATIN (7 total), please visit the HSDB record page. Metabolism / Metabolites Primarily hepatic, but only small amounts are metabolized. Primarily hepatic, but only small amounts are metabolized. Route of Elimination: In man, following a single dose of 4 mg/m2 of pentostatin infused over 5 minutes, approximately 90% of the dose was excreted in the urine as unchanged pentostatin and/or metabolites as measured by adenosine deaminase inhibitory activity. Half Life: 5.7 hours (with a range between 2.6 and 16 hrs) Biological Half-Life 5.7 hours (with a range between 2.6 and 16 hrs) Following iv administration of 4 mg/sq m of pentostatin as a single dose over 5 min in healthy individuals, the distribution half-life and terminal elimination half-life reportedly averaged 11 min and 5.7 hr, respectively. In a multiple dose study in a limited number of patients receiving 36 courses of pentostatin at a dosage of 4 mg/sq m iv, distribution half-life and terminal elimination half-life reportedly averaged 9.6 min (range: 3.1-48.5 min) and 4.9 hr, respectively. In other studies in a limited number of patients with advanced cancer, the distribution half-life averaged 17-85 min and the terminal elimination half-life averaged 2.6-15 hr following single iv doses of 0.1 or 0.25 mg/kg of pentostatin. In patients with renal impairment (creatinine clearance less than 60 ml/min),the half-life of pentostatin averages approximately 18 hr. |
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
Pentostatin is a potent transition state inhibitor of adenosine deaminase (ADA), the greatest activity of which is found in cells of the lymphoid system. T-cells have higher ADA activity than B-cells, and T-cell malignancies have higher activity than B-cell malignancies. The cytotoxicity that results from prevention of catabolism of adenosine or deoxyadenosine is thought to be due to elevated intracellular levels of dATP, which can block DNA synthesis through inhibition of ribonucleotide reductase. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Cytotoxicity is cell cycle phase-specific (S-phase). Toxicity Data Mouse(iv): LD50 122 mg/kg LD50=128 mg/kg (mouse) Interactions Limited data suggest that concomitant therapy with pentostatin (4 mg/sq m every 2 weeks) and fludarabine (principally 10 mg/sq m daily for 4 days at 28 day intervals), a synthetic purine nucleoside, may be associated with severe and/or fatal pulmonary toxicity (eg, pneumonitis). In one study, 4 of 6 patients receiving the drugs concomitantly for treatment of refractory chronic lymphocytic leukemia reportedly developed such toxicity. Although therapy with either pentostatin or allopurinol alone has been associated with the development of skin rash, limited evidence suggests that concomitant use of the drugs, compared with pentostatin therapy alone, in patients with refractory hairy cell leukemia is not associated with an increased incidence of rash. However, other toxicities, including abnormalities in renal or hepatic function, have been observed in a few patients receiving concomitant pentostatin and allopurinol. ... One patient reportedly developed a fatal hypersensitivity vasculitis while receiving pentostatin and allopurinol concurrently; however, a causal relationship to the drugs has not been established. Pentostatin inhibits the degradation of vidarabine and enhances its cytotoxicity in cell culture and in animals with experimentally induced leukemia. In addition, limited data in patients with acute leukemia suggest that combined therapy with the drugs may be associated with increased plasma vidarabine concentrations and/or half-life and greater toxicity compared with pentostatin therapy alone. Although improvement and/or remission has been reported in a few patients with acute T cell lymphoblastic leukemia who received vidarabine and pentostatin concomitantly. |
参考文献 |
|
其他信息 |
Therapeutic Uses
Antibiotics; Antineoplastic Agents; Enzyme Inhibitors; Immunosuppressive Agents Antibiotics, Antineoplastic; Enzyme Inhibitors; Immunosuppressive Agents Antineoplastic Pentostatin is used for the palliative treatment of hairy cell leukemia (leukemic reticuloendotheliosis) that responds inadequately to, or progresses during, interferon alfa therapy. Pentostatin has been designated an orphan drug by the US Food and Drug Administration (FDA) for the treatment of this condition. ... Pentostatin produces clinically important tumor regression or disease stabilization (complete or partial responses) in approximately 80-100% of patients with hairy cell leukemia, including in previously untreated patients (eg, those who have not undergone splenectomy or other therapy) as well as in those in whom splenectomy and/or therapy with other agents (eg, interferons, antineoplastic agents) have failed to control the disease (eg, those with progressive disease). In clinical studies in patients with interferon alfa-refractory hairy cell leukemia, a complete response to pentostatin therapy generally was defined as clearing of peripheral blood and bone marrow of hairy cells; normalization of organomegaly and lymphadenopathy; and recovery of hemoglobin concentration to at least 12 g/dl, platelet count to at least 100,000/cu mm, and granulocyte count to at least 1500/cu mm. A partial response was defined as a decrease of greater than 50% in the number of hairy cells in peripheral blood and bone marrow and a decrease of greater than 50% in organomegaly and lymphadenopathy; hematologic parameters for a partial response were the same as those for a complete response. Overall complete and partial responses of 58 and 28%, respectively, reportedly were observed in a limited number of these patients receiving pentostatin 4 mg/sq m iv every other week for 3 mo; responding patients continued treatment for another 3-9 mos. The median time to response in these patients reportedly was 4.7 mo (range: 2.9-24.1 mo). The median duration of response to pentostatin therapy in 2 clinical studies of patients with hairy cell leukemia reportedly exceeded 7.7 and 15.2 mo, with relapse occurring in approximately 15-20% of patients showing an initial response. For patients with progressive, postsplenectomy disease, pentostatin generally has been considered an alternative to interferon alfa or secondary therapy for interferon refractory disease since experience with interferon alfa has been more extensive to date. However, superiority of either drug or of other therapies remains to be established. For more Therapeutic Uses (Complete) data for PENTOSTATIN (10 total), please visit the HSDB record page. Drug Warnings Pentostatin is a toxic drug with a low therapeutic index, and a therapeutic response is not likely to occur without some evidence of toxicity. The drug must be used only under constant supervision by physicians experienced in therapy with cytotoxic agents. Most, but not all, adverse effects of pentostatin are reversible if detected promptly. When severe adverse effects occur during pentostatin therapy, the drug should be discontinued or dosage reduced and appropriate measures instituted. Pentostatin should be reinstituted with caution if at all, with adequate consideration of further need for the drug, and with awareness of possible recurrence of toxicity. Patients with poor performance status appear to experience greater toxicity with pentostatin and should be treated with the drug only when the anticipated benefits outweigh the potential risks. Hematologic function must be frequently and carefully monitored during and after pentostatin therapy, particularly during the first several courses of therapy in patients at increased risk of myelosuppression (eg, those with hairy cell leukemia). Initiation of pentostatin therapy in such patients can result in severe myelosuppression. If severe neutropenia continues beyond the initial cycles of pentostatin therapy, patients should be examined, including bone marrow examination, to determine the status of their disease. In addition, periodic monitoring for evidence of peripheral hairy cells should be performed in patients with this leukemia to evaluate the patient's response to therapy. Bone marrow aspirations and biopsies also may be required at 2 to 3 mo intervals. Patients receiving pentostatin should be observed closely for signs of nonhematologic (eg, neurologic) toxicity. If severe adverse reactions occur, the drug should be withheld and appropriate corrective measures taken as indicated. Therapy with pentostatin should be temporarily withheld or discontinued in patients who develop evidence of neurologic toxicity. For more Drug Warnings (Complete) data for PENTOSTATIN (11 total), please visit the HSDB record page. Pharmacodynamics Pentostatin is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute nonlymphocytic leukemia and hairy cell leukemia. Anti-metabolites masquerade as purine or pyrimidine - which become the building blocks of DNA. They prevent these substances becoming incorporated in to DNA during the "S" phase (of the cell cycle), stopping normal development and division. It is a 6-thiopurine analogue of the naturally occurring purine bases hypoxanthine and guanine. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Cytotoxicity is cell cycle phase-specific (S-phase). |
分子式 |
C11H16N4O4
|
---|---|
分子量 |
268.2691
|
精确质量 |
268.117
|
元素分析 |
C, 49.25; H, 6.01; N, 20.88; O, 23.86
|
CAS号 |
53910-25-1
|
PubChem CID |
439693
|
外观&性状 |
White crystals from methanol/water
White to off-white solid |
密度 |
1.8±0.1 g/cm3
|
沸点 |
673.1±65.0 °C at 760 mmHg
|
熔点 |
220-225ºC
|
闪点 |
360.9±34.3 °C
|
蒸汽压 |
0.0±2.2 mmHg at 25°C
|
折射率 |
1.793
|
LogP |
-2.16
|
tPSA |
112.13
|
氢键供体(HBD)数目 |
4
|
氢键受体(HBA)数目 |
6
|
可旋转键数目(RBC) |
2
|
重原子数目 |
19
|
分子复杂度/Complexity |
356
|
定义原子立体中心数目 |
4
|
SMILES |
O1[C@]([H])(C([H])([H])O[H])[C@]([H])(C([H])([H])[C@]1([H])N1C([H])=NC2[C@@]([H])(C([H])([H])N=C([H])N([H])C1=2)O[H])O[H]
|
InChi Key |
FPVKHBSQESCIEP-KDXUFGMBSA-N
|
InChi Code |
InChI=1S/C11H16N4O4/c16-3-8-6(17)1-9(19-8)15-5-14-10-7(18)2-12-4-13-11(10)15/h4-9,16-18H,1-3H2,(H,12,13)/t6-,7+,8+,9-/m0/s1
|
化学名 |
(R)-3-((2S,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol
|
别名 |
Deoxycoformycin; CI825; CI-825; Deoxycoformycin; Nipent; 53910-25-1; 2'-Deoxycoformycin; PD-ADI; Pentostatina; Pentostatine; CI 825; PD81565; PD-81565; PD 81565; covidarabine; deoxycoformycin; pentostatine. brand name: Nipent.
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
H2O : ~100 mg/mL (~372.76 mM)
DMSO : ≥ 50 mg/mL (~186.38 mM) |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (7.75 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (7.75 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (7.75 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.7276 mL | 18.6379 mL | 37.2759 mL | |
5 mM | 0.7455 mL | 3.7276 mL | 7.4552 mL | |
10 mM | 0.3728 mL | 1.8638 mL | 3.7276 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。