Paclitaxel (Taxol)

别名: NSC 125973; BMS 181339-01; NSC-125973; BMS181339-01; NSC125973; BMS-181339-01; Trade name: Taxol; Taxol Konzentrat; Anzatax; Asotax; Bristaxol; Praxel; TAX.P88XT4IS4D; Paclitaxel; Taxol A; Yewtaxan; Genaxol; Plaxicel;
目录号: V1603 纯度: ≥98%
Paclitaxel(也称为 NSC-125973;BMS-181339-01;商品名紫杉醇;Anzatax;Asotax;Bristaxol)是一种高效微管聚合物稳定剂(稳定微管蛋白聚合的有丝分裂抑制剂),在人体中的 IC50 为 0.1 pM内皮细胞。
Paclitaxel (Taxol) CAS号: 33069-62-4
产品类别: Microtubule Associated
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
5mg
10mg
25mg
50mg
100mg
250mg
500mg
1g
2g
Other Sizes

Other Forms of Paclitaxel (Taxol):

  • Paclitaxel-d5
  • Paclitaxel-d5 (benzoyloxy)
  • Paclitaxel Poliglumex
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
顾客使用InvivoChem 产品Paclitaxel (Taxol)发表2篇科研文献
纯度/质量控制文件

纯度: ≥98%

纯度: ≥98%

产品描述
紫杉醇(也称为 NSC-125973;BMS-181339-01;商品名紫杉醇;Anzatax;Asotax;Bristaxol)是一种高效微管聚合物稳定剂(稳定微管蛋白聚合的有丝分裂抑制剂),IC50 为 0.1 pM在人类内皮细胞中。紫杉醇已显示出有效且广谱的抗肿瘤活性,并已广泛用于治疗各种癌症。它是从太平洋紫杉树短叶红豆杉中分离出来的天然产物,具有抗癌活性。紫杉醇与微管蛋白结合并抑制微管的分解,从而抑制细胞分裂。该药物还通过结合并阻断细胞凋亡抑制蛋白 Bcl-2 的功能来诱导细胞凋亡。
生物活性&实验参考方法
靶点
Microtubule; tubulin polymerization; tubulin stabilizer
体外研究 (In Vitro)
在细胞周期的 G2/M 期,紫杉醇(20 nM;48 小时)会导致细胞程序性死亡和停滞 [1]。紫杉醇(20 nM;48 小时)可诱导 p53 水平长期升高 [1]。 紫杉醇诱导p53水平长期升高(20 nM;48小时)。抗癌剂紫杉醇稳定微管蛋白聚合,导致细胞周期的G2/M期停滞和凋亡细胞死亡。然而,这种生长抑制和凋亡的分子机制尚不清楚。在这项研究中,我们使用具有不同雌激素受体(ER)和肿瘤抑制因子p53状态的MCF-7和MDA-MB-231人乳腺癌细胞来研究紫杉醇诱导生长抑制和凋亡的机制。用紫杉醇处理细胞导致细胞活力的时间依赖性抑制,这伴随着细胞在G2/M和亚G1凋亡区域的积聚,通过流式细胞术分析确定。此外,在用紫杉醇处理后,观察到两种细胞系中的染色质凝缩、DNA梯状结构形成和聚ADP核糖聚合酶(PARP)的蛋白水解切割,表明发生了凋亡细胞死亡。使用经紫杉醇处理的MCF-7和MDA-MB-231细胞的全细胞裂解物进行的蛋白质印迹分析表明,紫杉醇处理以时间依赖的方式抑制了细胞周期蛋白A和细胞周期蛋白B1蛋白的表达。紫杉醇对紫杉醇诱导的细胞生长和凋亡的抑制作用也与Wee1激酶表达的下调和细胞周期蛋白依赖性激酶抑制剂p21WAF/CIP1活性的显著诱导有关。此外,紫杉醇提高了两种细胞系中p21启动子的活性。这些发现表明,紫杉醇诱导的人乳腺癌细胞G2/M期阻滞和凋亡是通过p21的ER和p53非依赖性上调介导的[1]。
用脉冲紫杉醇暴露处理的两种肿瘤细胞系都表现出大量细胞发生凋亡,但与连续紫杉醇暴露相比,在细胞周期的G2/M期停滞的细胞要少得多。短期暴露于紫杉醇也会诱导IkappaBα的磷酸化和降解,进而导致两种细胞系中NF-kappaB的激活。发现Parthenolide抑制紫杉醇诱导的NF-kappaB/IkappaB信号通路的激活以及凋亡细胞死亡。结论:这些发现表明,紫杉醇诱导的细胞凋亡可能独立于之前的G2/M期阻滞而发生,并由NF-kappaB/IkappaB信号通路介导或调节。[2]
为了解决紫杉醇在抗凋亡蛋白Bcl-2存在下的疗效争议,我们研究了内质网中储存的钙作为一种潜在因素。我们的研究结果表明,ER钙库是紫杉醇和Bcl-2蛋白的共同靶点。紫杉醇直接与内质网结合,刺激钙释放到细胞质中,有助于诱导细胞凋亡。然而,Bcl-2的表达抑制了细胞内质网钙释放的促凋亡反应,从而抑制了癌症细胞发生凋亡的易感性。根据剂量的不同,紫杉醇诱导的刺激作用可以克服Bcl-2介导的对内质网钙释放的抑制作用,从而减弱Bcl-2对细胞凋亡的抵抗力。我们的发现首次证明内质网钙在Bcl-2存在的情况下对紫杉醇的疗效起着关键作用,从而深入了解了复杂但关键的紫杉醇-钙-Bcl-2关系,这可能会影响乳腺癌症的治疗[4]。
体内研究 (In Vivo)
在低剂量紫杉醇组中,紫杉醇(1-20mg/kg;腹腔注射;每两天一次,共5个周期)显著增加了肝转移的风险,同时对潜在肿瘤的生长影响很小。在此,我们报道了低剂量的紫杉醇增强小鼠模型中乳腺癌症细胞向肝脏的转移。我们使用微阵列分析来研究用低剂量或临床相关的高剂量紫杉醇治疗的侵袭性癌症细胞的基因表达模式。我们还研究了低剂量紫杉醇对体外和体内细胞迁移、侵袭和转移的影响。结果表明,低剂量紫杉醇促进炎症,启动上皮间质转化,从而增强肿瘤细胞在体外的迁移和侵袭。这些作用可以通过抑制NF-κB来逆转。此外,低剂量的紫杉醇促进了小鼠异种移植物的肝转移,这与宿主肝脏中雌激素代谢的变化有关。总之,这些发现揭示了紫杉醇对乳腺癌症细胞活性的矛盾和剂量依赖性影响,并建议在治疗过程中更多地考虑与低浓度紫杉醇相关的潜在不良影响[3]。
本研究的目的是检验化疗诱导的周围神经病变(CIPN)的独特表现将反映在皮肤神经元亚群细胞内钙浓度([Ca(2+)]i)调节的特定变化模式中的预测。为了验证这一预测,我们描述了与紫杉醇给药(2mg/kg,静脉注射,每隔一天一次,持续四天)相关的机械伤害性阈值的变化模式,以及神经支配靶点和紫杉醇治疗对推定的伤害性和非伤害性神经元亚群中[Ca(2+)]i调节的影响。用逆行示踪剂鉴定了支配后爪无毛和多毛皮肤以及大腿的神经元,并使用fura-2来评估[Ca(2+)]i的变化。紫杉醇与后爪无毛皮肤受到刺激时机械伤害性阈值的持续降低有关,但与后爪或大腿的多毛皮肤无关。然而,在假定的伤害性和非伤害性神经元中,治疗后支配大腿的神经元的静息[Ca(2+)]i显著降低。在假定的非伤害性大腿神经元中,去极化诱发的Ca(2+)瞬变的幅度也较低。更有趣的是,虽然紫杉醇对推定的非伤害性神经元中的静息或去极化诱发的Ca(2+)瞬变没有可检测的影响,但在推定的伤害性神经元里,诱发的Ca。这些结果表明,仅外周神经长度并不能解释CIPN症状的选择性分布。相反,他们认为CIPN的症状反映了治疗的毒性作用与受到有害影响的神经元的独特特性之间的相互作用[6]。
细胞实验
细胞凋亡分析[1]
细胞类型: MCF-7、MDA-MB-231 细胞
测试浓度: 20 nM
孵育持续时间: 48 小时
实验结果:诱导程序性细胞死亡。

细胞周期分析[1]
细胞类型: MCF-7、MDA-MB -231 细胞
测试浓度: 20 nM
孵育时间:48小时
实验结果:>60%的MCF-7细胞和50%的MDA-MB-231细胞被24小时治疗后的G2/M期。

蛋白质印迹分析[1]
细胞类型: MCF-7 细胞(含有野生型 p53)
测试浓度: 20 nM
孵育持续时间: 48 小时
实验结果: 诱导 p53 水平持续增加。
动物实验
Animal/Disease Models: MDA-231 xenograft-bearing mice[3]
Doses: 1, 20 mg/kg
Route of Administration: intraperitoneal (ip)injection; five cycles (1 time/2 days)
Experimental Results: Liver metastases were obviously induced in the low-PTX (1 mg /kg) group with little influence on primary tumor growth compared with high-PTX group.《hr Paclitaxel treatment[6]
One week following the DiI injection, rats were anesthetized with isofluorane and injected into the tail vein with 2 mg/kg paclitaxel or its vehicle (1:1:23, cremophor EL:ethanol:0.9% saline). The tail vein injection was repeated three more times every other day for a total of four injections.
Primary tumor growth and metastasis detection in vivo[3]
Specific pathogen free (SPF) nude mice were used. MDA-231 cells (1 × 106) were subcutaneously transplanted. After the formation of primary tumors (diameter > 5 mm), the mice were randomly grouped (10 mice per group) and different doses of PTX (paclitaxel) were diluted with normal saline and administrated by intraperitoneal injection (1 time/2 days). After five cycles of treatment, the mice were euthanized. The primary tumor growth and metastatic intensities were then measured, and images were captured.
参考文献
[1]. Choi YH, et al. Paclitaxel-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells. Oncol Rep. 2012 Dec;28(6):2163-9.
[2]. Dziadyk JM, et al. Paclitaxel-induced apoptosis may occur without a prior G2/M-phase arrest. Anticancer Res. 2004 Jan-Feb;24(1):27-36.
[3]. Li Q, et al. Low doses of paclitaxel enhance liver metastasis of breast cancer cells in the mouse model. FEBS J. 2016 Aug;283(15):2836-52.
[4]. Pan Z, et al. Paclitaxel attenuates Bcl-2 resistance to apoptosis in breast cancer cells through an endoplasmic reticulum-mediated calciumrelease in a dosage dependent manner. Biochem Biophys Res Commun. 2013 Feb 13. pii: S0006-291X(13)00259-3.
[5]. Cadamuro M, et al. Low dose paclitaxel reduces S100A4 nuclear import to inhibit invasion and hematogenous metastasis of cholangiocarcinoma. Cancer Res. 2016 Jun 21.
[6]. Yilmaz E, et al. Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat model of chemotherapy-induced peripheral neuropathy. Neuroscience. 2015 Aug 6;300:210-8.
[7]. Jing C, et al. E7080 enhances the antitumor effects of paclitaxel in anaplastic thyroid cancer. Am J Cancer Res. 2017 Apr 1;7(4):903-912.
[8]. X-ray Crystal Structure-Guided Discovery of Novel Indole Analogues as Colchicine-Binding Site Tubulin Inhibitors with Immune-Potentiating and Antitumor Effects against Melanoma. J Med Chem . 2023 May 25;66(10):6697-6714.
其他信息
Taxol appears as needles (from aqueous methanol) or fine white powder. An anti-cancer drug. CAMEO Chemicals
Paclitaxel is a tetracyclic diterpenoid isolated originally from the bark of the Pacific yew tree, Taxus brevifolia. It is a mitotic inhibitor used in cancer chemotherapy. Note that the use of the former generic name 'taxol' is now limited, as Taxol is a registered trade mark. It has a role as a microtubule-stabilising agent, a metabolite, a human metabolite and an antineoplastic agent. It is a tetracyclic diterpenoid and a taxane diterpenoid. It is functionally related to a baccatin III. ChEBI
Paclitaxel is a chemotherapeutic agent marketed under the brand name Taxol among others. Used as a treatment for various cancers, paclitaxel is a mitotic inhibitor that was first isolated in 1971 from the bark of the Pacific yew tree which contains endophytic fungi that synthesize paclitaxel. It is available as an intravenous solution for injection and the newer formulation contains albumin-bound paclitaxel marketed under the brand name Abraxane. DrugBank
Paclitaxel is a Microtubule Inhibitor. The physiologic effect of paclitaxel is by means of Microtubule Inhibition. FDA Pharm Classes
Paclitaxel is an antineoplastic agent which acts by inhibitor of cellular mitosis and which currently plays a central role in the therapy of ovarian, breast, and lung cancer. Therapy with paclitaxel has been associated with a low rate of serum enzyme elevations, but has not been clearly linked to cases of clinically apparent acute liver injury. LiverTox
Paclitaxel is a natural product found in Aspergillus ochraceopetaliformis, Aspergillus versicolor, and other organisms with data available. LOTUS - the natural products occurrence database
View More

Paclitaxel is a compound extracted from the Pacific yew tree Taxus brevifolia with antineoplastic activity. Paclitaxel binds to tubulin and inhibits the disassembly of microtubules, thereby resulting in the inhibition of cell division. This agent also induces apoptosis by binding to and blocking the function of the apoptosis inhibitor protein Bcl-2 (B-cell Leukemia 2). (NCI04) NCI Thesaurus (NCIt)


Paclitaxel can cause developmental toxicity, female reproductive toxicity and male reproductive toxicity according to state or federal government labeling requirements.
A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS brevifolia. It stabilizes microtubules in their polymerized form leading to cell death. ABI-007 (Abraxane) is the latest attempt to improve upon paclitaxel, one of the leading chemotherapy treatments. Both drugs contain the same active agent, but Abraxane is delivered by a nanoparticle technology that binds to albumin, a natural protein, rather than the toxic solvent known as Cremophor. It is thought that delivering paclitaxel with this technology will cause fewer hypersensitivity reactions and possibly lead to greater drug uptake in tumors. Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel.
Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer.
Paclitaxel is an antineoplastic agent which acts by inhibitor of cellular mitosis and which currently plays a central role in the therapy of ovarian, breast, and lung cancer. Therapy with paclitaxel has been associated with a low rate of serum enzyme elevations, but has not been clearly linked to cases of clinically apparent acute liver injury.
Standard formulation paclitaxel requires the use of solvents, such as Cremphor-EL, which contribute to some of the toxicities commonly associated with paclitaxel-based therapy. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is a novel solvent-free formulation of paclitaxel. The formulation is prepared by high-pressure homogenization of paclitaxel in the presence of serum albumin into a nanoparticle colloidal suspension. The human albumin-stabilized paclitaxel particles have an average size of 130 nm. Nab-paclitaxel has several practical advantages over Cremphor-EL-paclitaxel, including a shorter infusion time (30 min) and no need for premedications for hypersensitivity reactions. The nab-paclitaxel formulation eliminates the impact of Cremphor-EL on paclitaxel pharmacokinetics and utilizes the endogenous albumin transport mechanisms to concentrate nab-paclitaxel within the tumor. A recent Phase III trial compared nab- and Cremphor-EL-paclitaxel in patients with metastatic breast cancer. Patients treated with nab-paclitaxel experienced a higher response, longer time to tumor progression and, in patients receiving second-line or greater therapy, a longer median survival. Patients treated with nab-paclitaxel had a significantly lower rate of severe neutropenia and a higher rate of sensory neuropathy. The preclinical and clinical data indicate that the nab-paclitaxel formulation has significant advantages over Cremphor-EL-paclitaxel.
Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis.
Absorption: When a 24 hour infusion of 135 mg/m^2 is given to ovarian cancer patients, the maximum plasma concentration (Cmax) is 195 ng/mL, while the AUC is 6300 ng•h/mL.
Route of Elimination: In 5 patients administered a 225 or 250 mg/m2 dose of radiolabeled paclitaxel as a 3-hour infusion, a mean of 71% of the radioactivity was excreted in the feces in 120 hours, and 14% was recovered in the urine.
Volume of Distribution: 227 to 688 L/m^2 [apparent volume of distribution at steady-state, 24 hour infusion]
Clearance:
21.7 L/h/m2 [Dose 135 mg/m2, infusion duration 24 h]
23.8 L/h/m2 [Dose 175 mg/m2, infusion duration 24 h]
7 L/h/m2 [Dose 135 mg/m2, infusion duration 3 h]
12.2 L/h/m2 [Dose 175 mg/m2, infusion duration 3 h]
Paclitaxel bound to nanoparticles of the serum protein albumin is delivered via endothelial transport mediated by albumin receptors, and the resulting concentration of paclitaxel in tumor cells is increased compared with that achieved using an equivalent dose of conventional paclitaxel. Like conventional paclitaxel, albumin-bound paclitaxel has a large volume of distribution. Following 30-minute or 3-hour IV infusion of 80-375 mg/sq m albumin-bound paclitaxel, the volume of distribution averaged 632 L/sq m. The volume of distribution of albumin-bound paclitaxel 260 mg/sq m by 30-minute IV infusion was 53% larger than the volume of distribution of conventional paclitaxel 175 mg/sq m by 3-hour IV infusion. /Paclitaxel (albumin-bound)/.
Hepatic. In vitro studies with human liver microsomes and tissue slices showed that paclitaxel was metabolized primarily to 6a-hydrox-ypaclitaxel by the cytochrome P450 isozyme CYP2C8; and to two minor metabolites, 3’-p-hydroxypaclitaxel and 6a, 3’-p-dihydroxypaclitaxel, by CYP3A4.
Biological Half-Life: When a 24 hour infusion of 135 mg/m^2 is given to ovarian cancer patients, the elimination half=life is 52.7 hours.
Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Evidence suggests that paclitaxel also may induce cell death by triggering apoptosis. In addition, paclitaxel and docetaxel enhance the effects of ionizing radiation, possibly by blocking cells in the G2 phase, the phase of the cell cycle in which cells are most radiosensitive.
Paclitaxel is an antimicrotubule antineoplastic agent. Unlike some other common antimicrotubule agents (e.g., vinca alkaloids, colchicine, podophyllotoxin), which inhibit microtubule assembly, paclitaxel and docetaxel (a semisynthetic taxoid) promote microtubule assembly. Microtubules are organelles that exist in a state of dynamic equilibrium with their components, tubulin dimers. They are an essential part of the mitotic spindle and also are involved in maintenance of cell shape and motility, and transport between organelles within the cell. By binding in a reversible, concentration-dependent manner to the beta-subunit of tubulin at the N-terminal domain, paclitaxel enhances the polymerization of tubulin, the protein subunit of the spindle microtubules, even in the absence of factors that are normally required for microtubule assembly (e.g., guanosine triphosphate [GTP]), and induces the formation of stable, nonfunctional microtubules. Paclitaxel promotes microtubule stability even under conditions that typically cause depolymerization in vitro (e.g., cold temperature, the addition of calcium, the presence of antimitotic drugs). While the precise mechanism of action of the drug is not understood fully, paclitaxel disrupts the dynamic equilibrium within the microtubule system and blocks cells in the late G2 phase and M phase of the cell cycle, inhibiting cell replication.

*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C47H51NO14
分子量
853.906
精确质量
853.33093
元素分析
C, 66.11; H, 6.02; N, 1.64; O, 26.23
CAS号
33069-62-4
相关CAS号
Paclitaxel-d5;1129540-33-5;Paclitaxel-d5 (benzoyloxy);1261254-56-1; 33069-62-4; 186040-50-6 (ceribate); 263351-82-2 (Poliglumex); 117527-50-1 (Paclitaxel-Succinic acid)
PubChem CID
36314
外观&性状
White to off-white solid powder
密度
1.4±0.1 g/cm3
沸点
957.1±65.0 °C at 760 mmHg
熔点
213 °C
闪点
532.6±34.3 °C
蒸汽压
0.0±0.3 mmHg at 25°C
折射率
1.637
LogP
7.38
tPSA
221.29
InChi Key
RCINICONZNJXQF-MZXODVADSA-N
InChi Code
InChI=1S/C47H51NO14/c1-25-31(60-43(56)36(52)35(28-16-10-7-11-17-28)48-41(54)29-18-12-8-13-19-29)23-47(57)40(61-42(55)30-20-14-9-15-21-30)38-45(6,32(51)22-33-46(38,24-58-33)62-27(3)50)39(53)37(59-26(2)49)34(25)44(47,4)5/h7-21,31-33,35-38,40,51-52,57H,22-24H2,1-6H3,(H,48,54)/t31-,32-,33+,35-,36+,37+,38-,40-,45+,46-,47+/m0/s1
化学名
(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-9-(((2R,3S)-3-benzamido-2-hydroxy-3-phenylpropanoyl)oxy)-12-(benzoyloxy)-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxete-6,12b-diyl diacetate
别名
NSC 125973; BMS 181339-01; NSC-125973; BMS181339-01; NSC125973; BMS-181339-01; Trade name: Taxol; Taxol Konzentrat; Anzatax; Asotax; Bristaxol; Praxel; TAX.P88XT4IS4D; Paclitaxel; Taxol A; Yewtaxan; Genaxol; Plaxicel;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 171 mg/mL (200.3 mM)
Water:<1 mg/mL
Ethanol:18 mg/mL (21.1 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (2.44 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 2.08 mg/mL (2.44 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (2.44 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入900 μL 玉米油中,混合均匀。


配方 4 中的溶解度: 1% DMSO +30% polyethylene glycol+1% Tween 80 : 30 mg/mL

配方 5 中的溶解度: 10 mg/mL (11.71 mM) in Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。

配方 6 中的溶解度: 10 mg/mL (11.71 mM) in 50% PEG300 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.1711 mL 5.8554 mL 11.7108 mL
5 mM 0.2342 mL 1.1711 mL 2.3422 mL
10 mM 0.1171 mL 0.5855 mL 1.1711 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Genetic Testing in Screening Patients With Stage IB-IIIA Non-small Cell Lung Cancer That Has Been or Will Be Removed by Surgery (The ALCHEMIST Screening Trial)
CTID: NCT02194738
Phase: N/A
Status: Recruiting
Date: 2024-07-15
A Study of B013 in Combination With Paclitaxel in Patients With Platinum-resistant Recurrent Ovarian Cancer.
CTID: NCT06434610
Phase: Phase 2
Status: Recruiting
Date: 2024-07-15
Testing the Addition of an Individualized Vaccine to Durvalumab and Tremelimumab and Chemotherapy in Patients With Metastatic Triple Negative Breast Cancer
CTID: NCT03606967
Phase: Phase 2
Status: Recruiting
Date: 2024-07-15
Paclitaxel & Cyclophosphamide With or Without Trastuzumab Before Surgery in Treating Previously Untreated Breast Cancer
CTID: NCT01750073
Phase: Phase 2
Status: Active, not recruiting
Date: 2024-07-15
Testing the Addition of a Type of Drug Called Immunotherapy to the Usual Chemotherapy Treatment for Non-Small Cell Lung Cancer, ALCHEMIST Trial
CTID: NCT04267848
Phase: Phase 3
Status: Recruiting
Date: 2024-07-15
生物数据图片
  • Paclitaxel
  • Paclitaxel

相关产品
联系我们