Oleic acid

别名: D 100 Oleic acid9-cis-Octadecenoic acid9Z-Octadecenoic acid 油酸;(Z)-9-十八烯酸;红油;顺-9-十八烯酸;顺式-9-十八烯酸;十八碳烯-9-酸;顺式十八烯-9-酸; 动物型植物型油酸;动物油酸;高纯油酸,AR;高纯油酸,CP;十八烯酸;十八烯酸(油酸) 标准品;食品级亚油酸;顺式十八碳-9-烯酸;亚油酸;油酸 EP标准品;油酸 USP标准品;油酸 标准品;油酸(SG);油酸,GR;抛光膏(红色);十八碳-9-烯酸;十八碳烯酸(顺-9);油酸(C18:1)标准品;植物油酸;红油,顺式-9-十八烯酸;顺-9-十八碳烯酸;椰树油酸;油酸,顺式;油酸6907;油酸;十八烯酸;油酸,99%;油酸,85%;油酸 5ML;油酸、十八烯酸;油酸(4°C);7075高纯油酸
目录号: V26870 纯度: ≥98%
油酸(也称为 9-顺式十八烯酸;9Z-十八烯酸)是最常见和最丰富的单不饱和脂肪酸 (FA),充当 Na+/K+ ATP 酶激活剂。
Oleic acid CAS号: 112-80-1
产品类别: ATPase
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
10mg
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Oleic acid:

  • 油酸钠
  • Palmitoleic acid-13C16 (palmitoleic acid-13C16)
  • Linoleic acid-13C1 (linoleic acid 13C1)
  • Linoleic acid-13C18 (linoleic acid 13C18)
  • Ethyl linoleate-13C18 (Linoleic Acid-13C18 ethyl ester; Mandenol-13C18)
  • Oleic acid-13C18 (9-cis-Octadecenoic acid-13C18; 9Z-Octadecenoic acid-13C18)
  • Oleic acid-13C (9-cis-Octadecenoic acid-13C; 9Z-Octadecenoic acid-13C)
  • Linoleic acid-d2 (linoleic acid-d2; Deulinoleic acid)
  • Oleic acid-d2 (9-cis-Octadecenoic acid-d2; 9Z-Octadecenoic acid-d2)
  • 油酸甘油酯
  • 9-Nitrooleate-d17 (9-Nitro oleic acid-d17)
  • Oleic acid-d17 (9-cis-Octadecenoic acid-d17; 9Z-Octadecenoic acid-d17)
  • Oleic acid-13C-1 (油酸 13C-1)
  • 油酸-d9
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
油酸(也称为 9-顺式十八烯酸;9Z-十八烯酸)是最常见和最丰富的单不饱和脂肪酸 (FA),充当 Na+/K+ ATP 酶激活剂。它是各种动植物油脂中天然存在的脂肪酸。作为人类脂肪细胞和其他组织中最常见的单不饱和脂肪酸,油酸通过增强 AMPK 激活介导的 β-氧化来促进高转移性癌细胞的细胞增殖和迁移。油酸可抑制低转移性癌细胞的生长和存活,例如胃癌 SGC7901 和乳腺癌 MCF-7 细胞系。
生物活性&实验参考方法
靶点
Endogenous Metabolite; Na+/K+ ATPase
体外研究 (In Vitro)
人体脂肪细胞和其他组织中最常见的不饱和肥料(FA)是油酸。油酸可增加 β-氧化介导的 AMPK 激活介导的细胞增殖和高度转移细胞的迁移。油酸抑制低增殖肿瘤的生长和死亡,包括乳腺癌 MCF-7 细胞系以及 SGC7901 [1]。
体内研究 (In Vivo)
日粮中油酸的摄入可改善小鼠的跑步耐力,并随肌肉纤维类型份额的变化而变化。本研究阐明了油酸在骨骼肌纤维类型中的一种新功能。需要进一步的研究来阐明潜在的机制。我们的发现有可能通过营养方法为健康和体育科学领域做出贡献,例如开发旨在改善肌肉功能的补充剂。[3]
酶活实验
油红O染色和甘油三酯测定[2]
用油红O对脂滴进行染色。在0.3%的2-丙醇中制备储备溶液,用水(3∶2)稀释储备溶液,制备新的工作溶液。固定后,将细胞在PBS中洗涤两次,并分别用油红O和苏木精染色15分钟和1分钟。用PBS洗涤细胞,并在光对比显微镜下获得图像。根据制造商推荐的方案,使用甘油三酯测定试剂盒(GPO-POD)测定细胞内甘油三酯
耗氧量的测定[2]
将五百万个细胞重悬在用21%氧气预平衡的1ml新鲜温热培养基中,并放置在配备有恒温器控制、微搅拌装置和Clark型氧电极盘的密封呼吸室中。持续监测细胞悬浮培养基中的氧含量10分钟,并记录氧消耗速率
ATP分析[2]
用ATPlite测定试剂盒测定细胞内ATP水平。将细胞在含有或不含有400µM OA的无血清培养基中孵育48小时,用PBS洗涤三次,在ATP提取缓冲液中裂解,并在4°C中离心。根据制造商的说明书,使用市售的荧光素/荧光素酶试剂在光度计(TD-20/20)上通过光度法测量ATP。将数据归一化为总蛋白质。
细胞实验
细胞活力测定[2]
用不同的应激源处理48孔板中密度为每孔10000个细胞的细胞。根据制造商的方案,使用3-[4,5-二甲基噻唑-2-基]-2,5-二苯基溴化四氮唑(MTT)测定法测量细胞活力
BrdU掺入测定[2]
根据制造商的说明书,通过使用BrdU掺入测定法测量BrdU的掺入来测定细胞增殖。简言之,用10uM BrdU对接种在96孔板中的5000个细胞/孔进行脉冲标记2小时。将细胞与稀释的过氧化物酶缀合的抗BrdU抗体一起孵育30分钟。使用ELISA读取器在450nm处测量吸光度值
迁移测定[2]
使用Transwell室(8µm孔径的聚碳酸酯膜)进行细胞迁移测定。将总共50个K细胞接种到200µl含有BSA或400µM BSA结合油酸的无血清培养基中的插入物中,并允许其在指定的时间段内从上部室向下部室以15%的FBS梯度迁移。迁移后,通过擦洗去除膜上表面上的非迁移细胞,并将膜固定在缓冲的4%多聚甲醛中,并在室温下用0.1%结晶紫染色。然后对迁移的细胞进行计数。迁移值表示为来自三个独立膜实验的每次测定的六个场上每个显微镜场迁移的细胞的平均数量。
动物实验
All animal experiments were conducted in strict accordance with the Guidelines for Proper Conduct of Animal Experiments published by the Science Council of Japan and with the approval of the Animal Care and Use Committee of Kitasato University (approval no. 20-007). And all methods were performed in accordance with guidelines and regulations at Kitasato University, as well as complying with ARRIVE guidelines for the reporting of animal experiments. Eight-week-old male C57BL/6JJcl mice were purchased from CLEA Japan, Inc. The experimental design is illustrated in Fig. 5. The mice were housed in plastic cages in an animal room at 22 ± 2 °C and 50 ± 10% humidity under an artificial lighting system of 12-h light/12-h dark cycle. They were acclimated to the environment for one week. Following the acclimatization period, the mice were fed a CE-2 diet supplemented with 10% (w/w) palmitic acid (control diet) or oleic acid for 4 weeks. Palmitic acid was chosen as control fatty acid because it is a representative saturated fatty acid commonly found in soybean oil and olive oil, which has been used in previous studies. Although we considered using linoleic acid as a control, we decided against it because unsaturated fatty acids have ligand activity for PPARs. In our previous study, we reported the results of an 8-week feeding test, and in a preliminary study we confirmed similar changes in skeletal muscle characteristics even with a 4-week period. Therefore, we chose a shorter period of 4 weeks for this study. Nutritional and fatty acid compositions of experimental diets are shown in Table 2 and 3, respectively. Running endurance tests and serum biochemical analyses were performed on the last day of week 3 and the first day of week 4, respectively. After a 4-week feeding period, the mice were euthanized by cervical dislocation under inhalation anesthesia with isoflurane. The adipose tissues, liver, and skeletal muscles (soleus, EDL, and gastrocnemius muscles) were harvested and weighed immediately. The growth performance and tissue weight are shown in Table 1. All tissues were stored at –80 °C until further analysis [3].
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Fatty acid uptake by different tissues may be mediated via passive diffusion to facilitated diffusion or a combination of both. Fatty acids taken up by tissues are then stored in the form of triglycerides or oxidized. Oleic acid was shown to penetrate rat skin. Following oral administration of Brucea javanica oil emulsion in rats, the time of oleic acid to reach peak plasma concentration was approximately 15.6 hours.
Following oral administration of trace amounts of oleic acid, less than 10% of total oleic acid was found to be eliminated via fecal excretion.
Radio-labelled oleic acid was detected in the heart, liver, lung, spleen, kidney, muscle, intestine, adrenal, blood, and lymph, and adipose, mucosal, and dental tissues. Oleic acid is primarily transported via the lymphatic system.
No pharmacokinetic data available.
Radioactivity has been traced to the heart, liver, lung, spleen, kidney, muscle, intestine, adrenal, blood, and lymph, and adipose, mucosal, and dental tissues after administration of radioactive oleic, palmitic, and stearic acids.
Simultaneous ingestion of trace amounts of 14C-triolein (10 uCi) and 3H-oleic acid (20 uCi) in 42 g of carrier fat by patients with normal fecal fat excretion resulted in estimated fecal excretion of less than 10% of both substances. Gastrointestinal transit times for 14C-triolein, 3H-oleic acid, and a nonabsorbable marker, CrCl3, did not differ significantly.
Oleic Acid has been reported to penetrate the skin of rats. On histological examination, fluorescence from absorbed oleic acid was found in epidermal cell layers of skin removed from treated rats within 10 min of its application. The path of penetration was suggested to be via the hair follicles. Only minute amounts of oleic acid were visualized in the blood vessels throughout the experiment. Skin permeability was shown to increase with the lipophilic nature of a compound.
METABOLISM OF TRITIATED OLEIC ACID WAS STUDIED IN RATS DURING 600 DAYS. DURING FIRST 4 DAYS, HALF ACTIVITY IS FIXED TO WATER & HALF IS STORED IN ADIPOSE TISSUE WHICH IT LEAVES QUICKLY, THEN MORE SLOWLY WITH T/2 OF ABOUT 200 DAYS.
For more Absorption, Distribution and Excretion (Complete) data for OLEIC ACID (10 total), please visit the HSDB record page.
Metabolism / Metabolites
Like most fatty acids, oleic acid may undergo oxidation via beta-oxidation and tricarboxylic acid cycle pathways of catabolism, where an additional isomerization reaction is required for the complete catabolism of oleic acid. Via a series of elongation and desaturation steps, oleic acid may be converted into longer chain eicosatrienoic and nervonic acid.
Proposed mechanisms for fatty acid uptake by different tissues range from passive diffusion to facilitated diffusion or a combination of both. Fatty acids taken up by the tissues can either be stored in the form of triglycerides (98% of which occurs in adipose tissue depots) or they can be oxidized for energy via the beta-oxidation and tricarboxylic acid cycle pathways of catabolism.
The beta-oxidation of fatty acids occurs in most vertebrate tissues (except the brain) using an enzyme complex for the series of oxidation and hydration reactions resulting in the cleavage of acetate groups as acetyl-CoA (coenzyme A). An additional isomerization reaction is required for the complete catabolism of Oleic Acid. Alternate oxidation pathways can be found in the liver (omega-oxidation) and in the brain (alpha-oxidation).
Fatty acid biosynthesis from acetyl-CoA takes place primarily in the liver, adipose tissue, and mammary glands of higher animals. Successive reduction and dehydration reactions yield saturated fatty acids up to a 16-carbon chain length. Stearic Acid is synthesized by the condensation of palmitoyl-CoA and acetyl-CoA in the mitochondria, and Oleic Acid is formed via a mono-oxygenase system in the endoplasmic reticulum.
The normal metabolic pathway of palmitic and stearic acids in mammals produces oleic acid. Oleic acid, on a series of elongation and desaturation steps, may be converted into longer chain eicosatrienoic and nervonic acid.
Weanling rats were fed diets containing rapeseed, canbra or ground nut oils for 8 or 60 days. They received simultaneously (14)C erucate and (3)H2 oleate by iv application. Animals were killed 2 or 19 hr after injection, lungs were removed and the distribution of (14)C and (3)H radioactivities was determined in pulmonary lipid fractions and in fatty acids of phospholipids and neutral lipids. More (14)C than (3)H radioactivity was recovered in lung lipids 3 and 19 hr after admin of labelled fatty acids. (14)C and (3)H radioactivity in the phospholipid fraction was larger than in the triglyceride fraction, the inverse was observed after 19 hr. The main part of (14)C radioactivity was present in the monounsaturated fatty acids, in decr order: 18:1, 24:1, 16:1 and 20:1. Erucic acid was slightly esterified in phospholipids.
Oleic acid has known human metabolites that include 18-Hydroxyoleic acid and 17-Hydroxyoleic acid.
Biological Half-Life
No pharmacokinetic data available.
METABOLISM OF TRITIATED OLEIC ACID WAS STUDIED IN RATS DURING 600 DAYS. /ELIMINATION OCCURED/ SLOWLY WITH T/2 OF ABOUT 200 DAYS.
毒性/毒理 (Toxicokinetics/TK)
Protein Binding
As with other fatty acids originating from adipose tissue stores, oleic acid may bind to serum albumin or remain unesterified in the blood.
Interactions
LOW CONCN OF ... OLEIC ACID ... CAUSED CONSIDERABLE INCREASE IN THE INTESTINAL ABSORPTION OF AMORPHOUS & POLYMORPHIC CHLORAMPHENICOL IN THE CAT.
LIVER TRITIATED-LABELED OLEATE SHOWED ACCUMULATION OF NEWLY SYNTHESIZED TRIGLYCERIDES WITHOUT ANY EFFECT ON PHOSPHOLIPIDS, AFTER SINGLE INJECTION OF CEROUS CHLORIDE IN RATS. /TRITIATED-LABELED OLEATE/
ALTERATIONS IN PHOSPHOLIPID COMPOSITION IN BRAIN & HEART OCCURS IN RESPONSE TO ETHANOL IN THOSE STRAINS OF MICE THAT SHOW RAPID TOLERANCE TO ETHANOL. AN INCREASE IN LIVER PHOSPHOLIPIDS CONTAINING OLEIC ACID WERE FOUND IN ALL STRAINS.
AFTER 16 MIN OF BRAIN ISCHEMIA IN RATS, BRAIN OLEATE INCREASED 2.5-FOLD. POSTISCHEMIA THERAPY WITH THIOPENTAL ACCELERATED THE RATE OF FALL OF BRAIN OLEATE. /OLEATE/
For more Interactions (Complete) data for OLEIC ACID (11 total), please visit the HSDB record page.
Non-Human Toxicity Values
LD50 Rat oral 74 g/kg
LD50 Rat iv 2.4 mg/kg
LD50 Mouse iv 230 mg/kg
LD50 Guinea pig dermal >3000 mg/kg
参考文献
[1]. Jack-Hays MG, et al. Activation of Na+/K(+)-ATPase by fatty acids, acylglycerols, and related amphiphiles: structure-activity relationship. Biochim Biophys Acta. 1996 Feb 21;1279(1):43-8.
[2]. Li S, et al. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner. PLoS One. 2014 May 13;9(5):e97330.
[3]. Sci Rep. 2024 Jan 8;14(1):755. doi: 10.1038/s41598-023-50464-y.
其他信息
Therapeutic Uses
/EXPTL THER/ Ten Japanese boys with childhood adrenoleukodystrophy (ALD), one adult patient with adrenomyeloneuropathy (AMN), and two presymptomatic ALD boys were treated with dietary erucic acid (C22:1) for more than 12 months; except in a case of childhood ALD patient who died 7 months after beginning erucic acid therapy. During erucic acid therapy, the serum levels of very long-chain fatty acid (VLCFA) (C24:0/C22:0) decreased within 1-2 months in all patients, and these levels in four of the patients decreased to the normal range. Neurological examination and MRI findings in all 10 of the childhood ALD patients showed progression of the disease while they were receiving the dietary therapy. However, the mean interval between the onset of awkward gait and a vegetative state in diet-treated patients was significantly longer than that in the untreated patients. One AMN patient showed slight improvement of spastic gait and lessened pain in the lower limbs due to spasticity. The two presymptomatic ALD boys remained intact on clinical examination and on MRI findings for 38 and 23 months, respectively, after starting the diet.
/EXPL THER/ An open 2 yr trial of oleic and erucic acids (Lorenzos oil) included 14 men with adrenomyeloneuropathy, 5 symptomatic heterozygous women and 5 boys with preclinical adrenomyeloneuropathy. No evidence of a clinically relevant benefit from dietary treatment in patients with adrenomyeloneuropathy (accumulation of very-long-chain fatty acids) could be found. /Lorenzos oil/
Drug Warnings
40 male and 6 female patients with adrenoleukodystrophy received Lorenzos oil (20% erucic acid and 80% oleic acid). In 19 of these patients the platelet count decr significantly. In 6 patients with thrombocytopenia, platelet counts became normal within 2 to 3 mo after erucic acid was omitted from the diet. Observations suggested that strategies for the dietary management of adrenoleukodystrophy requiring the admin of large amt of erucic acid may be associated with thrombocytopenia and that the erucic acid component of Lorenzos oil is the cause of the thrombocytopenia. Patients treated with erucic acid should be followed closely with determinations of the platelet count. /Lorenzos oil: 20% erucic acid and 80% oleic acid/
15 men with adrenoleukodystrophy and 3 symptomatic heterozygous women were admin oleic and erucic acids (Lorenzos oil). Asymptomatic thrombocytopenia developed in 5 patients (platelet counts ranged between 37000 and 84000 per cu mm) but was reversed within 2 to 3 wk after erucic acid was omitted. In addition, long-term treatment with Lorenzos oil (for 24 to 43 mo) was associated with lymphocytopenia in these 5 patients. The observations suggested that the long-term treatment of adrenoleukodystrophy with Lorenzos oil can induce severe lymphocytopenia with immunosuppression and recurrent infections. /Lorenzos oil/
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C18H34O2
分子量
282.468
精确质量
282.255
元素分析
C, 76.54; H, 12.13; O, 11.33
CAS号
112-80-1
相关CAS号
Sodium oleate;143-19-1;Oleic acid-13C;82005-44-5;Oleic acid-d2;5711-29-5;Glycerol Monoleate;25496-72-4;Oleic acid-13C18;287100-82-7;Oleic acid-d17;223487-44-3;Oleic acid-13C-1;2483735-58-4;Oleic acid-d9;2687960-84-3
PubChem CID
445639
外观&性状
Colorless to light yellow liquid
密度
0.9±0.1 g/cm3
沸点
360.0±0.0 °C at 760 mmHg
熔点
13-14 °C(lit.)
闪点
270.1±14.4 °C
蒸汽压
0.0±1.7 mmHg at 25°C
折射率
1.467
来源
Endogenous Metabolite
LogP
7.7
tPSA
37.3
氢键供体(HBD)数目
1
氢键受体(HBA)数目
2
可旋转键数目(RBC)
15
重原子数目
20
分子复杂度/Complexity
234
定义原子立体中心数目
0
SMILES
O([H])C(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C(/[H])=C(/[H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])=O
InChi Key
ZQPPMHVWECSIRJ-KTKRTIGZSA-N
InChi Code
InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9-
化学名
9-Octadecenoic acid (9Z)-
别名
D 100 Oleic acid9-cis-Octadecenoic acid9Z-Octadecenoic acid
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
Ethanol : ~100 mg/mL (~354.03 mM)
0.1 M NaOH : ~100 mg/mL (~354.03 mM)
DMSO : ≥ 62.5 mg/mL (~221.27 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (8.85 mM) (饱和度未知) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL 澄清 EtOH 储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL 生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (8.85 mM) (饱和度未知) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清乙醇储备液加入 900 μL 20% SBE-β-CD 生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (8.85 mM) (饱和度未知) in 10% EtOH + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清乙醇储备液添加到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: ≥ 2.08 mg/mL (7.36 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清的DMSO储备液加入400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 5 中的溶解度: ≥ 2.08 mg/mL (7.36 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100μL 20.8mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

配方 6 中的溶解度: ≥ 2.08 mg/mL (7.36 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.5402 mL 17.7010 mL 35.4020 mL
5 mM 0.7080 mL 3.5402 mL 7.0804 mL
10 mM 0.3540 mL 1.7701 mL 3.5402 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们