规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
HSF1 (heat shock factor 1)
|
---|---|
体外研究 (In Vitro) |
NXP800(实施例169)(IC50=0.056μM)降低U20S细胞的活力。
|
体内研究 (In Vivo) |
药代动力学分析 [2] 物种途径 剂量 (mg/kg) Tmax (h) AUClast (ng·h/mL) Cltb (mL/min/kg) t1/2 (h) F (%) AUCu0-t ( h·nM) ) 游离 Cav0-24h (nM) Clu (mL/min/kg) 大鼠 口服/IV 5/1 6.0 2600(口服) 24 (iv) 3.1 45(口服) 86 3.7 730 (iv) 狗 口服/IV 2.5/0.5 2.0 250(口头) 21(IV) 1.4 9.1(PO) 35 1.9 150(IV)
|
酶活实验 |
CH1doxR/CH1wt多药耐药性检测[2]
使用之前使用CellTiter Blue活力测定法描述的相同方法,在CH1wt和CH1doxR细胞中评估了化合物如NXP-800(CCT361814)的抗增殖活性。通过用2µM(R)-(+)-维拉帕米单盐酸盐水合物处理细胞,证实了CH1doxR细胞系抗增殖活性的挽救(http://www.sigmaaldrich.com/catalog/product/sigma/v106?lang=en®ion=GB,2017年2月)和双酰胺类似物。然后使用Student t检验和Welch校正比较CH1wt和CH1doxR细胞中每个细胞中至少n=3个生物重复的几何平均pGI50值(pGI50=-log GI50(M));当p<0.05时,该化合物被认为是MDR底物(GraphPad Prism 7.01)。CH1doxR和CH1wt中几何平均GI50s的比率被定义为MDR比率[2]。 |
细胞实验 |
体外细胞活力测定[2]
CellTiter Blue活性测定提供了一种均匀的荧光法来估算活细胞的数量。它使用深蓝色指示染料刃天青来测量细胞的代谢能力,这是细胞存活率的指标。活细胞能够将刃天青还原为高度荧光的resorufin(粉红色)。简而言之,将细胞(约6 x 103个细胞/mL)接种到384孔板中,并孵育24小时。使用ECHO 550液体处理器加入不同浓度的化合物(例如NXP-800(CCT361814)),然后在37℃下放置96小时。向每个孔中加入滴定蓝试剂,并在37℃上放置3-4小时。使用Envision机器测量荧光。50%生长抑制浓度(GI50)是通过使用非线性回归将数据无限制地拟合到剂量反应曲线上来确定的。每种浓度测试两次[2]。 |
动物实验 |
In vivo Studies [2]
Compound 22 (NXP-800 (CCT361814)) was dissolved in 10% DMSO and diluted in 90% sterile solvent (25% w/v hydroxypropyl β-cyclodextrin in 50 mM sodium citrate buffer pH 5) such that mice received the dose required in 0.1 mL of final solution per 10 g body weight. Controls received an equal volume of vehicle only. For multi-dose tolerability studies, NCr athymic mice (n=2 per cohort) were administered 50 mg/kg or 100 mg/kg of compound 22 (NXP-800 (CCT361814)) orally every day for five days. Mice were monitored for signs of distress and body weights were measured daily until full recovery was observed. Dosing at 100 mg/kg of compound 22 (NXP-800 (CCT361814)) was not tolerated and, therefore, was terminated at day 4. For efficacy studies, SK-OV-3 cells (5 million per site) were injected s.c. in the flanks of 6- to 8-week-old female NCr athymic mice (n=20). Dosing commenced when tumors were well established (~5-6 mm diameter). Tumor volumes were determined as previously described. On study termination, blood samples were taken, and plasma was separated and stored at -80 C. [2] CHAC1 Western Blot and MSD Assays Tumors were snap frozen in liquid nitrogen and stored at -80 oC until processed. Tumors were lysed in 50 mM Tris-HCl (pH 7.4), 1 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM NaF, 1 mM sodium vanadate (activated), 10 µg/mL Nα-tosyl-L-lysine chloromethyl ketone hydrochloride, 5 µM fenvalerate, 5 µM bpVphen, 1 mM phenylmethanesulfonyl fluoride, 1:100 protease cocktail and 1:50 of phosphatases inhibitor 2 and 3. Protein concentration was determined by Direct Detect® Infrared Spectrometer. Each lysate was separated by SDS-PAGE, electrotransferred onto PVDF membranes, blocked with 5% milk and probed with specific primary antibody CHAC1 (1:100 dilution) and horseradish peroxidase-conjugated secondary (1:1000) antibody. Signal was detected with enhanced chemiluminescence reagent. Glyceraldehyde-3-phosphate dehydrogenase (1:20000 dilution) was used as the loading control. All reagents were purch |
药代性质 (ADME/PK) |
The mouse in vivo CLu for compound 22/NXP-800 (CCT361814) was consistent with the predicted value from the MHeps assay and comparable to methyl analogue 16 (Table 2, entry 1). Despite the decreased lipophilicity, the CH1doxR/CH1WT-predicted P-gp-mediated efflux ratio was low and fluorobisamide 22 displayed good mouse oral bioavailability (42%) from moderate total blood clearance (CLtb = 10 mL/min/kg, extraction ratio = 11%, Fmax = 89%).22 Owing to these favorable data, fluorobisamide 22 was selected for evaluation of its in vivo efficacy against established SK-OV-3 human ovarian cancer solid tumor xenografts in athymic immunodeficient mice (Table 5).[1]
The fluorine MMP, compound 22/NXP-800 (CCT361814), pleasingly displayed the desired reduction in lipophilicity (Table 3, entry 6), which correlated with reduced in vitro MLM (15 μL/min/mg) and mouse hepatocyte CLint; while maintaining excellent antiproliferative activity (free GI50 = 3.7 nM, fua = 0.43; Table S4)39 and acceptable KS (50 μM). Fluorobisamide 22 was therefore submitted for an in vivo mouse PK study (Table 4, entry 1). |
参考文献 |
|
其他信息 |
CCT251236 1, a potent chemical probe, was previously developed from a cell-based phenotypic high-throughput screen (HTS) to discover inhibitors of transcription mediated by HSF1, a transcription factor that supports malignancy. Owing to its activity against models of refractory human ovarian cancer, 1 was progressed into lead optimization. The reduction of P-glycoprotein efflux became a focus of early compound optimization; central ring halogen substitution was demonstrated by matched molecular pair analysis to be an effective strategy to mitigate this liability. Further multiparameter optimization led to the design of the clinical candidate, CCT361814/NXP800 22, a potent and orally bioavailable fluorobisamide, which caused tumor regression in a human ovarian adenocarcinoma xenograft model with on-pathway biomarker modulation and a clean in vitro safety profile. Following its favorable dose prediction to human, 22 has now progressed to phase 1 clinical trial as a potential future treatment for refractory ovarian cancer and other malignancies.[2]
|
分子式 |
C32H32FN5O4
|
---|---|
分子量 |
569.63
|
精确质量 |
569.243
|
元素分析 |
C, 67.47; H, 5.66; F, 3.34; N, 12.29; O, 11.23
|
CAS号 |
1693734-80-3
|
相关CAS号 |
1693734-80-3;
|
PubChem CID |
117996795
|
外观&性状 |
Light yellow to green yellow solid powder
|
LogP |
3.7
|
tPSA |
96
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
8
|
可旋转键数目(RBC) |
7
|
重原子数目 |
42
|
分子复杂度/Complexity |
919
|
定义原子立体中心数目 |
0
|
SMILES |
N1C2C(=CC(C(NC3=CC(NC(C4=CC=C5OCCOC5=C4)=O)=CC=C3F)=O)=CC=2)C=CC=1CN1CCN(CC)CC1
|
InChi Key |
UBALMDIKIGDHJW-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C32H32FN5O4/c1-2-37-11-13-38(14-12-37)20-25-6-3-21-17-22(4-9-27(21)34-25)32(40)36-28-19-24(7-8-26(28)33)35-31(39)23-5-10-29-30(18-23)42-16-15-41-29/h3-10,17-19H,2,11-16,20H2,1H3,(H,35,39)(H,36,40)
|
化学名 |
N-[5-(2,3-dihydro-1,4-benzodioxine-6-carbonylamino)-2-fluorophenyl]-2-[(4-ethylpiperazin-1-yl)methyl]quinoline-6-carboxamide
|
别名 |
CCT-361814; NPX800; CCT 361814; SCHEMBL16621389; NXP-800; BDBM610359; CCT361814; NPX 800; NPX-800
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ~100 mg/mL (~175.55 mM)
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.7555 mL | 8.7776 mL | 17.5553 mL | |
5 mM | 0.3511 mL | 1.7555 mL | 3.5111 mL | |
10 mM | 0.1756 mL | 0.8778 mL | 1.7555 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。