规格 | 价格 | 库存 | 数量 |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
Rho-associated protein kinas/ROCK; norepinephrine transporter/NET
|
||
---|---|---|---|
体外研究 (In Vitro) |
体外活性:先前的研究表明,在细胞水平上,netarsudil 已被证明能够诱导肌动蛋白应力纤维的损失、细胞形状的改变、粘着斑的损失以及 TM 细胞的细胞外基质组成的变化。 Netarsudil(以前称为 AR-13324)是 ROCK 抑制剂,Ki 为 0.2-10.3 nM。它还抑制去甲肾上腺素转运活性,从而减少房水的产生。细胞测定:先前的研究表明,在细胞水平上,netarsudil 已被证明能够诱导肌动蛋白应力纤维的损失、细胞形状的改变、粘着斑的损失以及 TM 细胞的细胞外基质组成的变化。
|
||
体内研究 (In Vivo) |
动物功效研究发现,奈塔舒地尔的局部治疗能够影响小鼠常规流出道的近端部分(小梁网和施累姆斯管)和远端部分(巩膜内血管)。
青光眼造成的视力损害目前影响着全球7000万人。虽然可以通过有效降低眼压来减缓或停止疾病的进展,但目前的医学治疗往往是不够的。幸运的是,针对导致高眼压的病变常规流出组织的三种新疗法已进入人体试验的最后阶段。rho激酶抑制剂已被证明特别有效,并可添加到当前的治疗中。不幸的是,监测流出液组织健康状况及其对常规流出液治疗反应的非接触式技术在临床上尚不可用。利用光学相干层析成像(OCT)和新型分割软件,我们首次展示了药物对活体眼睛常规流出组织的影响。外用奈沙地尔(原AR-13324)是一种rho激酶/去甲肾上腺素转运蛋白抑制剂,影响小鼠常规流出道的近端(小梁网和施莱姆管)和远端(束内血管)。因此,流出组织灌注增加可以通过OCT可靠地分辨为netarsudil治疗后小梁网变宽和Schlemm管横截面积显著增加。这些变化与流出设施增加、流出血管斑点变异强度增加、常规流出组织中示踪剂沉积增加和眼压降低同时发生。这是第一次使用实时成像技术来显示药物对常规流出组织的实时作用,特别是奈沙地尔在小鼠眼睛中的作用机制。这里的进步为开发用于监测青光眼治疗的临床友好型OCT平台铺平了道路。[1] 配对人眼(n = 5)分别灌注0.3 μM netarsuil - m1或恒压(15 mm Hg)载药溶液。3小时后,在灌注介质中加入荧光微球,在灌注固定前追踪流出模式。通过测量示踪剂在小梁网(TM)、锁膜外静脉(ESVs)和施莱姆管内壁(IW)的分布长度,计算有效滤过长度百分比(PEFL)。通过共聚焦、光学和电子显微镜观察小梁流出通道的形态学变化。结果:与基线(51%,P < 0.01)和配对对照(102%,P < 0.01)相比,灌注netarsudil-M1显著增加了C, IW (P < 0.05)和esv (P < 0.01)的PEFL均显著增加。在治疗组中,esv组PEFL明显高于IW组(P < 0.01),且与esv横截面积增加相关(P < 0.01)。esv有效滤过长度百分比与C变化百分比呈正相关(R2 = 0.58, P = 0.01)。与对照组相比,治疗组的眼关节旁结缔组织(JCT)厚度显著增加(P < 0.05)。[2] |
||
酶活实验 |
在PDB中总共发现了23个ROCK结构。最大和最小分辨率分别为3.4Å和2.93Å。选择7个ROCK-I和2个ROCK-II非冗余结构用于结合测定。在测试的46种化合物(20种异喹啉、15种氨基呋咱、6种苯二氮卓、4种吲唑和1种酰胺)中,与Y-27632相比,34种化合物的ROCK-1对接得分显著更高(p<0.0001)。所有ROCKi类的平均对接得分均高于Y-27632(p<0.0001)。ROCK-I的异喹啉、氨基呋咱和苯二氮卓类化合物呈现最高对接得分的频率更高;以及ROCK-II的异喹啉和酰胺(补充图S2A)。ROCK-I和II平均对接得分最高的前十种化合物如补充图S2B所示。异喹啉类药物占前十个最高对接得分内药物的70%,其中三种化合物的对接得分强于Ş12。除Y-27632外,ROCK抑制剂之间没有显著差异。有趣的是,计算机分子对接模拟显示,大多数评估的分子,特别是异喹啉、苯二氮卓和酰胺类分子,对ROCK-1和ROCK-2的结合强度高于Y-27632(补充图S2B)。进行了计算机分子对接模拟,将PDB中发现的AR-13324和Y-27632抑制剂的异构体与高分辨率ROCK蛋白偶联。所有测试的AR-13324分子对ROCK-1和-2的对接得分都高于Y-27632。此外,异喹啉、苯二氮卓和酰胺类的PDB分子也显示出比Y-27632异构体更高的平均对接得分(补充图S2B)[3]。
|
||
细胞实验 |
根据制造商的说明,使用EdU掺入Click-iT细胞增殖测定法评估原代CEC的增殖率。评估了两种ROCK抑制剂AR-13324和AR-13503在两种浓度(AR-13324为100 nM或1 M,AR-13503为1 M或10 M)下增强CECs增殖的能力。不添加ROCKi的供体匹配CECs作为阴性对照,而添加Y-27632的CECs作为阳性对照。简言之,使用TS传代的培养的CEC以5 103个细胞/cm2的密度接种到FNC涂布的载玻片上,并在M5 Endo中维持24小时(第1天)。第二天(第2天),将培养基切换到各自的条件,并将细胞再培养24小时。第三天,将细胞在含有10mMof-EdU的M4-F99中孵育24小时。随后,用PBS冲洗样品一次,然后将样品在室温下固定在新制备的4%PFA中15分钟。接下来,用PBS中的3%BSA冲洗样品两次,并在室温下在PBS中0.5%Triton X-100中孵育20分钟以进行封闭和透化。通过荧光叠氮化物偶联Click-iT反应检测掺入的EdU,其中将样品与含有Click-iT-EdU反应缓冲液、CuSO4、叠氮化物缀合的Alexa Fluor 488染料和反应缓冲液添加剂的反应混合物在黑暗中孵育30分钟。之后,用3%BSA冲洗样品,然后在室温下黑暗中在5g/mL Hoechst 33342中孵育10分钟。最后,在PBS中洗涤样品两次,并将样品安装在含有4,6-二脒基-2-苯基吲哚(DAPI)的Vectashield中。在Zeiss Axioplan 2荧光显微镜下检查标记的增殖细胞。对于每种实验条件,至少分析了250个细胞核[3]。
|
||
动物实验 |
|
||
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
The systemic exposure of netarsudil and its active metabolite, AR-13503, after topical ocular administration of netarsudil opthalmic solution 0.02% once daily (one drop bilaterally in the morning) for eight days in 18 healthy subjects demonstrated no quantifiable plasma concentrations of netarsudil (lower limit of quantitation [LLOQ] 0.100 ng/mL) post dose on Day 1 and Day 8. Only one plasma concentration at 0.11 ng/mL for the active metabolite was observed for one subject on Day 8 at 8 hours post dose. Clinical studies assessing the *in vitro* metabolism of netarsudil using corneal tissue from humans, human plasma, and human liver microsomes and microsomal S9 fractions demonstrated that netarsudil metabolism occurs through esterase activity. Subsequent metabolism of netarsudil's esterase metabolite, AR-13503, was not detectable. In fact, esterase metabolism in human plasma was not detected during a 3 hour incubation. As netarsudil and its active metabolite demonstrate a high degree of protein binding, it is expected to exhibit a low volume of distribution. The clearance of netarsudil is strongly influenced by its low plasma concetrations following topical administration and absorption and high protein binding in human plasma inn. Metabolism / Metabolites After topical ocular dosing, netarsudil is metabolized by esterases in the eye to its active metabolite, netarsudil-M1 (or AR-13503). Biological Half-Life The half-life of netarsudil incubated *in vitro with human corneal tissue is 175 minutes. |
||
毒性/毒理 (Toxicokinetics/TK) |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation No information is available on the use of netarsudil during breastfeeding. Because netarsudil poorly absorbed by the mother after administration to the eye, it is unlikely to adversely affect the breastfed infant. Until more data become available, netarsudil should be used with caution during breastfeeding, especially while nursing a newborn or preterm infant. To decrease the amount of drug that reaches the breastmilk after using eye drops, place pressure over the tear duct by the corner of the eye for 1 minute or more, then remove the excess solution with an absorbent tissue. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding The active metabolite of netarsudil, AR-13503 is highly protein bound in plasma, at approximately 60% bound. As AR-13503 is considered to bind less extensively to plasma proteins as its parent netarsudil, the % protein binding of netarsudil may be at least 60% or higher. |
||
参考文献 |
[1]. Eur J Pharmacol.2016 Sep 15;787:20-31.
[2]. Invest Ophthalmol Vis Sci.2016 Nov1;57(14):6197-6209. [3]. Cells . 2023 May 3;12(9):1307. |
||
其他信息 |
Pharmacodynamics
Aqueous humour flows out of the eye via two pathways: 1) the conventional trabecular pathway and 2) the unconventional uveoscleral pathway. And, although it has been shown that the conventional trabecular pathway accounts for most aqueous outflow due to various pathologies, most medications available for treating glaucoma target the uveoscleral pathway for treatment and leave the diseased trabecular pathway untreated and unhindered in its progressive deterioration and dysfunction. Netarsudil is subsequently a novel glaucoma medication that is both a rho kinase and norepinephrine transport (NATs)s inhibitor that specifically targets and inhibits rho kinase and NATS found in the conventional trabecular pathway while many of its contemporaries offer therapy that focuses on cell and muscle tissue remodelling |
分子式 |
C28H27N3O3
|
|
---|---|---|
分子量 |
453.54
|
|
精确质量 |
453.205
|
|
元素分析 |
C, 74.15; H, 6.00; N, 9.27; O, 10.58
|
|
CAS号 |
1254032-66-0
|
|
相关CAS号 |
1422144-42-0 (mesylate);1254032-66-0;1253952-02-1 (HCl);
|
|
PubChem CID |
66599893
|
|
外观&性状 |
White to off-white solid powder
|
|
密度 |
1.3±0.1 g/cm3
|
|
沸点 |
711.9±60.0 °C at 760 mmHg
|
|
闪点 |
384.3±32.9 °C
|
|
蒸汽压 |
0.0±2.3 mmHg at 25°C
|
|
折射率 |
1.667
|
|
LogP |
3.53
|
|
tPSA |
94.3Ų
|
|
氢键供体(HBD)数目 |
2
|
|
氢键受体(HBA)数目 |
5
|
|
可旋转键数目(RBC) |
8
|
|
重原子数目 |
34
|
|
分子复杂度/Complexity |
678
|
|
定义原子立体中心数目 |
1
|
|
SMILES |
O(C(C1C=CC(C)=CC=1C)=O)CC1C=CC(=CC=1)[C@H](C(NC1C=CC2C=NC=CC=2C=1)=O)CN
|
|
InChi Key |
OURRXQUGYQRVML-AREMUKBSSA-N
|
|
InChi Code |
InChI=1S/C28H27N3O3/c1-18-3-10-25(19(2)13-18)28(33)34-17-20-4-6-21(7-5-20)26(15-29)27(32)31-24-9-8-23-16-30-12-11-22(23)14-24/h3-14,16,26H,15,17,29H2,1-2H3,(H,31,32)/t26-/m1/s1
|
|
化学名 |
Benzoic acid, 2,4-dimethyl-, (4-((1S)-1-(aminomethyl)-2-(6-isoquinolinylamino)-2-oxoethyl)phenyl)methyl ester
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2049 mL | 11.0244 mL | 22.0488 mL | |
5 mM | 0.4410 mL | 2.2049 mL | 4.4098 mL | |
10 mM | 0.2205 mL | 1.1024 mL | 2.2049 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
Netarsudil lowered intraocular pressure (IOP) in both pigmented and nonpigmented mice. Netarsudil mesylate enhanced IOP recovery in living mouse eyes.Eur J Pharmacol.2016 Sep 15;787:20-31. th> |
---|
Netarsudil mesylate increased outflow facility in perfused mouse eyes ex vivo.Eur J Pharmacol.2016 Sep 15;787:20-31. td> |
![]() Enhanced tracer deposition in outflow tissues of living mice subjected to netarsudil mesylate treatment.Eur J Pharmacol.2016 Sep 15;787:20-31. td> |
![]() Netarsudil-induced changes in conventional outflow tissue morphology of living mice visualized by optical coherence tomography (OCT).Eur J Pharmacol.2016 Sep 15;787:20-31. th> |
---|
Netarsudil increased cross-sectional area of Schlemms canal (SC) lumen in living mice with elevated intraocular pressure (IOP) visualized by optical coherence tomography (OCT).Eur J Pharmacol.2016 Sep 15;787:20-31. td> |
![]() Netarsudil-induced changes in flow area and intensity in scleral vessels visualized on OCT speckle variance images.Eur J Pharmacol.2016 Sep 15;787:20-31. td> |