规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
Rho-associated protein kinas/ROCK; norepinephrine transporter/NET
|
---|---|
体外研究 (In Vitro) |
体外活性:先前的研究表明,在细胞水平上,netarsudil 已被证明能够诱导肌动蛋白应力纤维的损失、细胞形状的改变、粘着斑的损失以及 TM 细胞的细胞外基质组成的变化。 Netarsudil(以前称为 AR-13324)是 ROCK 抑制剂,Ki 为 0.2-10.3 nM。它还抑制去甲肾上腺素转运活性,从而减少房水的产生。细胞测定:先前的研究表明,在细胞水平上,netarsudil 已被证明能够诱导肌动蛋白应力纤维的损失、细胞形状的改变、粘着斑的损失以及 TM 细胞的细胞外基质组成的变化。
|
体内研究 (In Vivo) |
在血压正常的猴眼中,盐酸奈达舒地尔(0.04%,50 µL)可降低眼压 (IOP)[1]。在荷兰带兔中,盐酸奈达舒地尔 (0.04%) 导致巩膜外静脉压 (EVP) 显着降低[2]。
|
酶活实验 |
在PDB中总共发现了23个ROCK结构。最大和最小分辨率分别为3.4Å和2.93Å。选择7个ROCK-I和2个ROCK-II非冗余结构用于结合测定。在测试的46种化合物(20种异喹啉、15种氨基呋咱、6种苯二氮卓、4种吲唑和1种酰胺)中,与Y-27632相比,34种化合物的ROCK-1对接得分显著更高(p<0.0001)。所有ROCKi类的平均对接得分均高于Y-27632(p<0.0001)。ROCK-I的异喹啉、氨基呋咱和苯二氮卓类化合物呈现最高对接得分的频率更高;以及ROCK-II的异喹啉和酰胺(补充图S2A)。ROCK-I和II平均对接得分最高的前十种化合物如补充图S2B所示。异喹啉类药物占前十个最高对接得分内药物的70%,其中三种化合物的对接得分强于Ş12。除Y-27632外,ROCK抑制剂之间没有显著差异。有趣的是,计算机分子对接模拟显示,大多数评估的分子,特别是异喹啉、苯二氮卓和酰胺类分子,对ROCK-1和ROCK-2的结合强度高于Y-27632(补充图S2B)。进行了计算机分子对接模拟,将PDB中发现的AR-13324和Y-27632抑制剂的异构体与高分辨率ROCK蛋白偶联。所有测试的AR-13324分子对ROCK-1和-2的对接得分都高于Y-27632。此外,异喹啉、苯二氮卓和酰胺类的PDB分子也显示出比Y-27632异构体更高的平均对接得分(补充图S2B)[3]。
|
细胞实验 |
根据制造商的说明,使用EdU掺入Click-iT细胞增殖测定法评估原代CEC的增殖率。评估了两种ROCK抑制剂AR-13324和AR-13503在两种浓度(AR-13324为100 nM或1 M,AR-13503为1 M或10 M)下增强CECs增殖的能力。不添加ROCKi的供体匹配CECs作为阴性对照,而添加Y-27632的CECs作为阳性对照。简言之,使用TS传代的培养的CEC以5 103个细胞/cm2的密度接种到FNC涂布的载玻片上,并在M5 Endo中维持24小时(第1天)。第二天(第2天),将培养基切换到各自的条件,并将细胞再培养24小时。第三天,将细胞在含有10mMof-EdU的M4-F99中孵育24小时。随后,用PBS冲洗样品一次,然后将样品在室温下固定在新制备的4%PFA中15分钟。接下来,用PBS中的3%BSA冲洗样品两次,并在室温下在PBS中0.5%Triton X-100中孵育20分钟以进行封闭和透化。通过荧光叠氮化物偶联Click-iT反应检测掺入的EdU,其中将样品与含有Click-iT-EdU反应缓冲液、CuSO4、叠氮化物缀合的Alexa Fluor 488染料和反应缓冲液添加剂的反应混合物在黑暗中孵育30分钟。之后,用3%BSA冲洗样品,然后在室温下黑暗中在5g/mL Hoechst 33342中孵育10分钟。最后,在PBS中洗涤样品两次,并将样品安装在含有4,6-二脒基-2-苯基吲哚(DAPI)的Vectashield中。在Zeiss Axioplan 2荧光显微镜下检查标记的增殖细胞。对于每种实验条件,至少分析了250个细胞核[3]。
|
动物实验 |
Animal/Disease Models: Adult female cynomolgus monkeys (3-5 kg)[1]
Doses: 0.04%, 50 μL Route of Administration: Topically applied to eye Experimental Results: Reduces IOP in normotensive monkey eyes. In Dutch Belted (DB) rabbits (n=11), arterial pressure (AP), IOP, carotid blood flow (BFcar), heart rate (HR), and EVP were measured invasively. Animals were dosed with AR-13324 (0.04%, topical, n=6) once daily for 3 days. On day 3, the animals were anesthetized, and then, measurements were obtained before dosing with AR-13324 or vehicle (n=5) and for 3 h after dosing. The data (mean±standard error of the mean) were analyzed by repeated measures ANOVA with post hoc testing. Retrospective baseline data from prior similar studies in New Zealand White rabbits were also compiled[2]. |
药代性质 (ADME/PK) |
Absorption
The systemic exposure of netarsudil and its active metabolite, AR-13503, after topical ocular administration of netarsudil opthalmic solution 0.02% once daily (one drop bilaterally in the morning) for eight days in 18 healthy subjects demonstrated no quantifiable plasma concentrations of netarsudil (lower limit of quantitation [LLOQ] 0.100 ng/mL) post dose on Day 1 and Day 8. Only one plasma concentration at 0.11 ng/mL for the active metabolite was observed for one subject on Day 8 at 8 hours post dose. Route of Elimination Clinical studies assessing the *in vitro* metabolism of netarsudil using corneal tissue from humans, human plasma, and human liver microsomes and microsomal S9 fractions demonstrated that netarsudil metabolism occurs through esterase activity. Subsequent metabolism of netarsudil's esterase metabolite, AR-13503, was not detectable. In fact, esterase metabolism in human plasma was not detected during a 3 hour incubation. Volume of Distribution As netarsudil and its active metabolite demonstrate a high degree of protein binding, it is expected to exhibit a low volume of distribution. Clearance The clearance of netarsudil is strongly influenced by its low plasma concetrations following topical administration and absorption and high protein binding in human plasma inn. Metabolism / Metabolites After topical ocular dosing, netarsudil is metabolized by esterases in the eye to its active metabolite, netarsudil-M1 (or AR-13503). Biological Half-Life The half-life of netarsudil incubated *in vitro with human corneal tissue is 175 minutes. |
毒性/毒理 (Toxicokinetics/TK) |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation No information is available on the use of netarsudil during breastfeeding. Because netarsudil poorly absorbed by the mother after administration to the eye, it is unlikely to adversely affect the breastfed infant. Until more data become available, netarsudil should be used with caution during breastfeeding, especially while nursing a newborn or preterm infant. To decrease the amount of drug that reaches the breastmilk after using eye drops, place pressure over the tear duct by the corner of the eye for 1 minute or more, then remove the excess solution with an absorbent tissue. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding The active metabolite of netarsudil, AR-13503 is highly protein bound in plasma, at approximately 60% bound. As AR-13503 is considered to bind less extensively to plasma proteins as its parent netarsudil, the % protein binding of netarsudil may be at least 60% or higher. |
参考文献 | |
其他信息 |
(1) Rho-associated coiled-coil protein kinase (ROCK) signaling cascade impacts a wide array of cellular events. For cellular therapeutics, scalable expansion of primary human corneal endothelial cells (CECs) is crucial, and the inhibition of ROCK signaling using a well characterized ROCK inhibitor (ROCKi) Y-27632 had been shown to enhance overall endothelial cell yield. (2) In this study, we compared several classes of ROCK inhibitors to both ROCK-I and ROCK-II, using in silico binding simulation. We then evaluated nine ROCK inhibitors for their effects on primary CECs, before narrowing it down to the two most efficacious compounds-AR-13324 (Netarsudil) and its active metabolite, AR-13503-and assessed their impact on cellular proliferation in vitro. Finally, we evaluated the use of AR-13324 on the regenerative capacity of donor cornea with an ex vivo corneal wound closure model. Donor-matched control groups supplemented with Y-27632 were used for comparative analyses. (3) Our in silico simulation revealed that most of the compounds had stronger binding strength than Y-27632. Most of the nine ROCK inhibitors assessed worked within the concentrations of between 100 nM to 30 µM, with comparable adherence to that of Y-27632. Of note, both AR-13324 and AR-13503 showed better cellular adherence when compared to Y-27632. Similarly, the proliferation rates of CECs exposed to AR-13324 were comparable to those of Y-27632. Interestingly, CECs expanded in a medium supplemented with AR-13503 were significantly more proliferative in (i) untreated vs. AR-13503 (1 μM; * p < 0.05); (ii) untreated vs. AR-13503 (10 μM; *** p < 0.001); (iii) Y-27632 vs. AR-13503 (10 μM; ** p < 0.005); (iv) AR-13324 (1 μM) vs. AR-13503 (10 μM; ** p < 0.005); and (v) AR-13324 (0.1 μM) vs. AR-13503 (10 μM; * p < 0.05). Lastly, an ex vivo corneal wound healing study showed a comparable wound healing rate for the final healed area in corneas exposed to Y-27632 or AR-13324. (4) In conclusion, we were able to demonstrate that various classes of ROCKi compounds other than Y-27632 were able to exert positive effects on primary CECs, and systematic donor-match controlled comparisons revealed that the FDA-approved ROCK inhibitor, AR-13324, is a potential candidate for cellular therapeutics or as an adjunct drug in regenerative treatment for corneal endothelial diseases in humans.[3]
|
分子式 |
C28H27N3O3.2HCL
|
---|---|
分子量 |
526.45
|
精确质量 |
525.158
|
元素分析 |
C, 63.88; H, 5.55; Cl, 13.47; N, 7.98; O, 9.12
|
CAS号 |
1253952-02-1
|
相关CAS号 |
Netarsudil dimesylate;1422144-42-0; 1254032-66-0; 1253952-02-1 (HCl)
|
PubChem CID |
66599892
|
外观&性状 |
Typically exists as white to off-white solids at room temperature
|
tPSA |
94.3Ų
|
氢键供体(HBD)数目 |
4
|
氢键受体(HBA)数目 |
5
|
可旋转键数目(RBC) |
8
|
重原子数目 |
36
|
分子复杂度/Complexity |
678
|
定义原子立体中心数目 |
1
|
SMILES |
O(C(C1C=CC(C)=CC=1C)=O)CC1C=CC(=CC=1)[C@H](C(NC1C=CC2C=NC=CC=2C=1)=O)CN.Cl.Cl
|
InChi Key |
LDKTYVXXYUJVJM-FBHGDYMESA-N
|
InChi Code |
InChI=1S/C28H27N3O3.2ClH/c1-18-3-10-25(19(2)13-18)28(33)34-17-20-4-6-21(7-5-20)26(15-29)27(32)31-24-9-8-23-16-30-12-11-22(23)14-24;;/h3-14,16,26H,15,17,29H2,1-2H3,(H,31,32);2*1H/t26-;;/m1../s1
|
化学名 |
[4-[(2S)-3-Amino-1-(isoquinolin-6-ylamino)-1-oxopropan-2-yl]phenyl]methyl 2,4-dimethylbenzoate dihydrochloride
|
别名 |
AR13324 HCl; Rhopressa; AR-13324 HCl; AR 13324; AR 13324 HCl; Netarsudil; AR-13324; Netarsudil hydrochloride;
Netarsudil dihydrochloride; 1253952-02-1; AR-13324 hydrochloride; Netarsudil (hydrochloride); SE030PF6VE; AR-13324 HCL; Netarsudil (AR-13324) 2HCl; (S)-4-(3-amino-1-(isoquinolin-6-ylamino)-1-oxopropan-2-yl)benzyl 2,4-dimethylbenzoate dihydrochloride;
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.8995 mL | 9.4976 mL | 18.9952 mL | |
5 mM | 0.3799 mL | 1.8995 mL | 3.7990 mL | |
10 mM | 0.1900 mL | 0.9498 mL | 1.8995 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
![]() Netarsudil lowered intraocular pressure (IOP) in both pigmented and nonpigmented mice. Netarsudil mesylate enhanced IOP recovery in living mouse eyes.Eur J Pharmacol.2016 Sep 15;787:20-31. th> |
---|
![]() Netarsudil mesylate increased outflow facility in perfused mouse eyes ex vivo.Eur J Pharmacol.2016 Sep 15;787:20-31. td> |
![]() Enhanced tracer deposition in outflow tissues of living mice subjected to netarsudil mesylate treatment.Eur J Pharmacol.2016 Sep 15;787:20-31. td> |
![]() Netarsudil-induced changes in conventional outflow tissue morphology of living mice visualized by optical coherence tomography (OCT).Eur J Pharmacol.2016 Sep 15;787:20-31. th> |
---|
![]() Netarsudil increased cross-sectional area of Schlemms canal (SC) lumen in living mice with elevated intraocular pressure (IOP) visualized by optical coherence tomography (OCT).Eur J Pharmacol.2016 Sep 15;787:20-31. td> |
![]() Netarsudil-induced changes in flow area and intensity in scleral vessels visualized on OCT speckle variance images.Eur J Pharmacol.2016 Sep 15;787:20-31. td> |