规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
Necrosis; MLKL/mixed lineage kinase domain-like protein
|
---|---|
体外研究 (In Vitro) |
Necrosulfonamide 通过阻断 N 末端 CC 结构域功能来抑制 MLKL 介导的坏死。 RIP3 激活后,可防止坏死。即使浓度为 5 μM,necrosulfonamide 对 TNF-α 加 Smac 模拟物在 RIP3 缺陷的 Panc-1 细胞中诱导的细胞凋亡也没有影响。在人类细胞中,necrosulfonamide 可有效抑制坏死,但在小鼠细胞中则不然。 necrosulfonamide 共价修饰的人 MLKL 残基 86 处的半胱氨酸被小鼠 MLKL(混合谱系激酶结构域样蛋白)中的色氨酸残基取代,这解释了 necrosulfonamide 的物种特异性[2]。
|
体内研究 (In Vivo) |
Necrosulfonamide (NSA) 是一种小分子,靶向坏死性凋亡的最终执行者 MLKL,特异性抑制坏死性凋亡。
|
酶活实验 |
使用抗 Flag 抗体对 RIP1 和 RIP3 进行免疫沉淀。 Flag 珠子用激酶缓冲液(50 mM HEPES,pH 7.5,10 mM MgCl2)洗涤 3 次后,与人工底物 MBP 或纯化的重组 MLKL 一起在 37°C 下与 2 μCi 的 [32P]γ-ATP 一起孵育 1 小时。 、50 mM NaCl、0.02% BSA、150 μM ATP 和 1 mM DTT)。然后对反应混合物进行SDS-PAGE和放射自显影。我们描述了一种称为 (E)-N-(4-(N-(3-甲氧基吡嗪-2-基)氨磺酰基)苯基)-3-(5-硝基噻吩-2-基)丙烯酰胺的小分子的发现,还称为坏死磺酰胺,它特异性抑制 RIP3 激活下游的坏死。通过与抗 RIP3 抗体和由 necrosulfonamide 制成的亲和探针进行共免疫沉淀,混合谱系激酶结构域样蛋白 (MLKL) 被鉴定为相互作用靶标。 MLKL 上的苏氨酸 357 和丝氨酸 358 残基被 RIP3 磷酸化,这些磷酸化事件对于坏死至关重要。
|
细胞实验 |
坏死抑制剂对 MLKL 磷酸化产生多种影响。 T/S/Z 适用于 HT-29 细胞 12 或 8 小时,有或没有坏死抑制剂。通过监测培养基中释放的蛋白酶活性,计算死亡细胞的数量。制备全细胞提取物,并使用蛋白质印迹对其进行分析。 1 或 10 μM necrosulfonamide 或 necrostatin-1 的最终浓度可抑制坏死。
|
动物实验 |
Male Wistar rats
1.65 mg/kg i.p. Rats were randomly allocated into four groups (8 rats/group). Group 1 (Control group) comprised normal vehicle-treated rats. Group 2 (AlCl3 group; AD group) comprised rats that were treated with AlCl3, dissolved in distilled water, orally at a dose of 17 mg/kg daily for 6 consecutive weeks, and represented the AD group. Group 3 (AlCl3 + necrosulfonamide (NSA) group) comprised rats that were treated with AlCl3, as in group 2, concomitantly with necrosulfonamide (NSA), dissolved in dimethyl sulfoxide, intraperitoneally at a dose of 1.65 mg/kg daily for 6 weeks. Group 4 (necrosulfonamide (NSA) group) comprised normal rats that were treated with NSA dissolved in dimethyl sulfoxide at a dose of 1.65 mg/kg/day intraperitoneally for 6 weeks. The dose of NSA was selected based on a pilot experiment conducted prior to the main study. In this preliminary study, the dose efficacy was evaluated based on histological examination of the hippocampus for amyloid plaque deposits and neuronal degeneration, learning and memory evaluation by Morris water maze and Y-maze tests, and analysis of hippocampal p-MLKL, p-tau, and β-amyloid levels, in AlCl3 + NSA-treated rats compared to AlCl3-treated rats.[4] |
参考文献 | |
其他信息 |
Necrosulfonamide is a sulfonamide that is a 3-methoxypyrazin-2-yl derivative of (E)-N-(4-(N-(4,6-dimethylpyrimidin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide. Necrosulfonamide specifically blocks necrosis downstream of the activation of RIP3 (the receptor-interacting serine-threonine kinase 3), a key signalling molecule in the programmed necrosis (necroptosis) pathway. It has a role as a necroptosis inhibitor and a neuroprotective agent. It is a sulfonamide, a member of pyrazines and a member of thiophenes.
Through high-throughput screening of 200 000 compounds and subsequent structure–activity relationship (SAR) studies we identified necrosulfonamide (NSA) as a potent small molecule inhibitor for necroptosis, induced by a combination of TNF-a, Smac mimetic, and z-VAD-fmk (T/S/Z). Applying a forward chemical genetic approach, we utilized an NSA based chemical probe to further reveal that NSA selectively targeted the Mixed Lineage Kinase Domain-like Protein (MLKL) to block the necrosome formation.[1] The receptor-interacting serine-threonine kinase 3 (RIP3) is a key signaling molecule in the programmed necrosis (necroptosis) pathway. This pathway plays important roles in a variety of physiological and pathological conditions, including development, tissue damage response, and antiviral immunity. Here, we report the identification of a small molecule called (E)-N-(4-(N-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide--hereafter referred to as necrosulfonamide--that specifically blocks necrosis downstream of RIP3 activation. An affinity probe derived from necrosulfonamide and coimmunoprecipitation using anti-RIP3 antibodies both identified the mixed lineage kinase domain-like protein (MLKL) as the interacting target. MLKL was phosphorylated by RIP3 at the threonine 357 and serine 358 residues, and these phosphorylation events were critical for necrosis. Treating cells with necrosulfonamide or knocking down MLKL expression arrested necrosis at a specific step at which RIP3 formed discrete punctae in cells. These findings implicate MLKL as a key mediator of necrosis signaling downstream of the kinase RIP3.[2] Programmed necrotic cell death induced by the tumor necrosis factor alpha (TNF-α) family of cytokines is dependent on a kinase cascade consisting of receptor-interacting kinases RIP1 and RIP3. How these kinase activities cause cells to die by necrosis is not known. The mixed lineage kinase domain-like protein MLKL is a functional RIP3 substrate that binds to RIP3 through its kinase-like domain but lacks kinase activity of its own. RIP3 phosphorylates MLKL at the T357 and S358 sites. Reported here is the development of a monoclonal antibody that specifically recognizes phosphorylated MLKL in cells dying of this pathway and in human liver biopsy samples from patients suffering from drug-induced liver injury. The phosphorylated MLKL forms an oligomer that binds to phosphatidylinositol lipids and cardiolipin. This property allows MLKL to move from the cytosol to the plasma and intracellular membranes, where it directly disrupts membrane integrity, resulting in necrotic death.[3] Alzheimer's disease (AD) is a progressively debilitating neurodegenerative disorder that has no effective remedy, so far, with available therapeutic modalities being only symptomatic and of modest efficacy. Necroptosis is a form of controlled cell death with a recently emerging link to the pathogenesis of several neurodegenerative diseases. This study investigated the role of necroptosis in the pathogenesis of AD and evaluated the potential beneficial effect of the necroptosis inhibitor, necrosulfonamide (NSA), in a rat model of AD. AD was induced by oral administration of AlCl3 (17 mg/kg/day) for 6 consecutive weeks. Administration of NSA (1.65 mg/kg/day) intraperitoneally for 6 weeks significantly amended AlCl3-induced spatial learning and memory deficits, as demonstrated by enhanced rat performance in Morris water and Y-mazes. NSA alleviated the abnormally high hippocampal expression of tumor necrosis factor-alpha (TNF-α), β-site amyloid precursor protein cleaving enzyme 1 (BACE1), β-amyloid, glycogen synthase kinase-3β (GSK-3β), phosphorylated tau protein, and acetylcholinesterase with concordant replenishment of acetylcholine. The amendments of AD perturbations achieved by NSA correlated with its inhibitory effect on the phosphorylation of the key necroptotic executioner, mixed lineage kinase domain-like protein (MLKL). Histopathological alterations supported the biochemical findings. In conclusion, NSA treatment represents a promising anti-Alzheimer's approach, mitigating AD neuropathologies via targeting MLKL-dependent necroptosis.[4] |
分子式 |
C18H15N5O6S2
|
---|---|
分子量 |
461.4716
|
精确质量 |
461.046
|
元素分析 |
C, 46.85; H, 3.28; N, 15.18; O, 20.80; S, 13.89
|
CAS号 |
432531-71-0
|
相关CAS号 |
Necrosulfonamide;1360614-48-7
|
PubChem CID |
1566236
|
外观&性状 |
Light yellow to yellow solid powder
|
密度 |
1.6±0.1 g/cm3
|
折射率 |
1.695
|
LogP |
4.08
|
tPSA |
195.95
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
10
|
可旋转键数目(RBC) |
7
|
重原子数目 |
31
|
分子复杂度/Complexity |
760
|
定义原子立体中心数目 |
0
|
SMILES |
COC1=NC=CN=C1NS(=O)(=O)C2=CC=C(C=C2)NC(=O)C=CC3=CC=C(S3)[N+](=O)[O-]
|
InChi Key |
FNPPHVLYVGMZMZ-XBXARRHUSA-N
|
InChi Code |
InChI=1S/C18H15N5O6S2/c1-29-18-17(19-10-11-20-18)22-31(27,28)14-6-2-12(3-7-14)21-15(24)8-4-13-5-9-16(30-13)23(25)26/h2-11H,1H3,(H,19,22)(H,21,24)/b8-4+
|
化学名 |
(E)-N-[4-[(3-methoxypyrazin-2-yl)sulfamoyl]phenyl]-3-(5-nitrothiophen-2-yl)prop-2-enamide
|
别名 |
Necrosulfonamide, MLKL inhibitor; Necrosome Inhibitor II; Necrosis Inhibitor III; Necrosulfonamide; 1360614-48-7; 432531-71-0; (E)-N-(4-(N-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophen-2-yl)acrylamide; CHEBI:63770; (E/Z)-Necrosulfonamide; (2E)-N-{4-[(3-methoxypyrazin-2-yl)sulfamoyl]phenyl}-3-(5-nitrothiophen-2-yl)prop-2-enamide; (E)-N-[4-[(3-methoxypyrazin-2-yl)sulfamoyl]phenyl]-3-(5-nitrothiophen-2-yl)prop-2-enamide;
Mixed Lineage Kinase Domain-Like Protein Inhibitor
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: ~92 mg/mL (~199.4 mM)
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1670 mL | 10.8349 mL | 21.6699 mL | |
5 mM | 0.4334 mL | 2.1670 mL | 4.3340 mL | |
10 mM | 0.2167 mL | 1.0835 mL | 2.1670 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。