Moxonidine (BDF5895)

别名: BDF-5895; BDF5895;BDF 5895;Cynt; Nucynt; BE 5895; BE-5895; BE5895 莫索尼啶; 4-氯-N-(4,5-二氢-1H-咪唑-2-基)-6-甲氧基-2-甲基-5-嘧啶胺; 莫索尼定; [ 2,4,6 -13C3 ] - 莫索尼定标准品; 4-氯-N-(4,5-二氢-1H-咪唑-2-基); Moxonidine 莫索尼啶;莫索尼定 EP标准品;莫索尼定-D3
目录号: V2386 纯度: ≥98%
Moxonidine(也称为 BDF5895)是一种有效的、选择性的咪唑啉受体亚型 1 激动剂,用作中枢活性抗高血压药。
Moxonidine (BDF5895) CAS号: 75438-57-2
产品类别: Imidazoline Receptor
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
100mg
250mg
500mg
Other Sizes

Other Forms of Moxonidine (BDF5895):

  • 盐酸莫索尼定
  • Moxonidine-d4 (Moxonidine d4)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
莫索尼定(也称为 BDF5895)是一种有效的、选择性的咪唑啉受体亚型 1 激动剂,用作中枢活性抗高血压药。莫索尼定可以与 I1-咪唑啉受体 (I1R) 和 α2-肾上腺素能受体 (α2AR) 结合。莫索尼定对 I1R 的选择性是 α2AR 的 33 倍。莫索尼定在中枢神经系统中发挥抗高血压作用。它有一个中心作用部位。在脊髓移植后的大鼠和猫中没有显示出任何效果。莫索尼定还可以减少交感神经流出并降低外周血管阻力。
生物活性&实验参考方法
体内研究 (In Vivo)
1. 先前关于 α 2-肾上腺素受体刺激对胃液分泌的影响的报道不一致,因为不清楚这些化合物是激活 α 2-肾上腺素受体还是新近描述的咪唑啉受体。在本实验中,研究了 I1-咪唑啉受体激动剂和抗高血压药物 莫索尼定 对胃液分泌和实验性胃粘膜损伤的影响。
2. 莫索尼定 (0.01、0.1 和 1.0 mg kg-1,腹腔注射) 可有效抑制清醒大鼠的基础(非刺激)胃酸分泌,ED50 为 0.04 mg kg-1。在给予最高剂量 莫索尼定 (1.0 mg kg-1) 两小时后,胃酸分泌完全被抑制。 莫索尼定在两个最高剂量下也显著升高了胃内 pH 值。
3. α2-肾上腺素能受体激动剂可乐定 (0.01、0.1 和 1.0 mg kg-1,腹腔注射) 在最低剂量 (37%) 和最高剂量 (46%) 下降低了基础酸分泌,而中间剂量不影响胃酸输出。
4.在乙醇诱发的胃粘膜损伤模型中,莫索尼定在最低和最高剂量(0.01 和 1.0 mg kg-1)下减少了病变长度,在最高剂量(1.0 mg kg-1)下减少了病变数量。
5. 在幽门结扎大鼠中,莫索尼定显著降低酸分泌(所有剂量)、总分泌量(1.0 mg kg-1)以及胃蛋白酶输出(1.0 mg kg-1)。
6. 与可乐定相比,莫索尼定似乎是一种更有效的抗分泌和胃保护化合物。这些数据表明咪唑啉受体激动剂在治疗与高血压相关的胃十二指肠疾病方面具有潜在作用。 莫索尼定的中枢和外周作用对这些胃肠道作用的相对贡献仍有待确定。
细胞实验
胃酸分泌
雄性 Sprague-Dawley 大鼠(研究开始时体重为 180 ± 10g)植入慢性留置胃插管,如前所述(Pare 等,1977)。经过 14 天的恢复期后,所有插管均牢固连接,未产生不良影响。分泌测试以 3 小时为一个阶段,顺序如下:载体(盐水 1.0 ml kg-')、莫索尼定 0.01 mg kg-'、0.1 mg kg-'。1.0 mg kg-' 腹腔注射,再次注入载体。每个阶段间隔 96 小时。在每个分泌测试阶段,基线收集后注射(腹腔注射)载体或莫索尼定,随后进行两次治疗后收集。因此,每只动物作为自己的对照,所有药物治疗前都有一个 1 小时的基线收集期,在此期间不进行注射。所有药物治疗均在注射载体之前和之后进行。记录分泌量,并使用 Mettler DL-21 自动滴定仪用 0.01 M NaOH 将每个样品的等分试样滴定至 pH 7.0。结果以 limol h-' 表示。为了进行比较,其他动物按上述方法准备,但按上述方法腹腔注射载体和可乐定,剂量为 0.01、0.1 和 1.0mgkg-'。
乙醇引起的胃粘膜损伤
将大鼠(每组 n = 5)随机分配到治疗组。在通过管饲法口服 1.0 ml 75% (v/v) 乙醇(加拿大工业酒精和化学品有限公司,加拿大安大略省科比维尔)之前,24 小时内禁食但不禁水(Robert 等人,1979 年)。在注射乙醇前 5 分钟腹腔注射剂量为 0.01、0.1 或 1.0mg kg-' 的载体或莫索尼定。在注射乙醇和药物后,将大鼠放回单独的笼子中,不给食物或水,持续 2 小时,然后通过颈椎脱位杀死大鼠。取出胃,翻出,清洗并固定在 10% (v/v) 缓冲福尔马林中,由治疗“盲法”观察员在解剖显微镜下用目镜测微计测定胃腺粘膜损伤的数量和累积长度(以毫米为单位)。
动物实验
Gastric acid secretion
Male Sprague-Dawley rats (180 ± 1Og at the start of the study) were implanted with chronic indwelling gastric cannulae as described previously (Pare et al., 1977). After a 14-day recovery period, all cannulae remained firmly attached and produced no untoward effects. Secretory testing in sessions of 3 h occurred in the following sequence: vehicle (saline 1.0 ml kg-'), moxonidine 0.01 mg kg-', 0.1 mg kg-'. 1.0 mg kg-' i.p. and vehicle again. Each of these sessions was separated by a 96 h period. Within each secretory testing session, a baseline collection was followed by the injection (i.p.) of the vehicle or moxonidine and two subsequent post treatment collections. Thus, each animal served as its own control and all drug treatments were preceded by a 1 h baseline collection period in which no injection occurred. All drug treatments were both preceded and followed by vehicle injections. The volume of secretion was recorded and aliquots of each sample were titrated to pH 7.0 with 0.01 M NaOH in a Mettler DL-21 autotitrator. The results are expressed as limol h-'. For purposes of comparison, other animals were prepared as described above, but given vehicle and clonidine at doses of 0.01, 0.1 and 1.0mgkg-' i.p. as described as above.
Ethanol-induced gastric mucosal injury
Rats (n = 5 per group) were randomly assigned to treatment conditions. They were deprived of food, but not water, for 24 h prior to being given 1.0 ml of 75% (v/v) ethyl alcohol (Canadian Industrial Alcohols and Chemicals Ltd., Corbyville, Ontario, Canada) p.o. by gavage (Robert et al., 1979). Vehicle or moxonidine at doses of 0.01, 0.1, or 1.0mg kg-' was given i.p. 5 min prior to ethanol. Following ethanol and drug treatment, rats were returned to individual cages without food or water for 2 h, after which time they were killed by cervical dislocation. The stomachs were removed, everted, washed and fixed in 10% (v/v) buffered formalin and the number and cumulative length (in millimeters) of gastric glandular mucosal injury determined under a dissecting microscope with an ocular micrometer by a treatment-'blinded' observer.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
90% of an oral dose is absorbed with negligible interference from food intake or first pass metabolism, resulting in a high bioavailability of 88%.
Elimination is nearly entirely via the kidneys with a majority (50 -75%) of overall moxonidine being eliminated unchanged through renal excretion. Ultimately, more than 90% of a dose is eliminated by way of the kidneys within the first 24 hours after administration, with only approximately 1% being eliminiated via faeces.
1.8±0.4L/kg.
Administered twice daily due to short half life. However, lower dosage adjustments and close monitoring is necessary in elderly and renal impairment patients due to reduced clearance. In particular, the exposure AUC can increase by about 50% following a single dose and at steady state in elderly patients and moderately impaired renal function with GFR between 30-60 mL/min can cause AUC increases by 85% and decreases in clearence to 52 %.
Metabolism / Metabolites
Biotransformation is unimportant with 10-20% of moxonidine undergoing oxidation reactions to the primary 4,5-dehydromoxonidine metabolite and a guanidine derivative by opening of the imidazoline ring. The antihypertensive effects of these 4,5-dehydromoxonidine and guanidine metabolites are only 1/10 and 1/100 the effect of moxonidine. Oxidation on either the methyl group (pyrimidine ring) or on the imidazole ring of moxonidine results in the formation of the hydroxylmethyl moxonidine metabolite or the hydroxy moxonidine metabolite. The hydroxy moxonidine metabolite can be further oxidized to the dihydroxy metabolite or it can lose water to form the dehydrogenated moxonidine metabolite, which itself can be further oxidized to form an N-oxide. Aside from these Phase I metabolites, Phase II metabolism of moxonidine is also evident with the presence of a cysteine conjugate metabolite minus chlorine. Nevertheless, the identification of the hydroxy moxonidine metabolite with a high level of dehydrogenated moxonidine metabolite in human urine samples suggests that dehydrogenation from the hydroxy metabolite to the dehydrogenated moxonidine metabolite represents the primary metabolic pathway in humans. The cytochromes P450 responsible for the metabolism of moxonidine in humans have not yet been determined. Ultimately, the parent moxonidine compound was observed to be the most abundant component in different biological matrices of urinary excretion samples, verifying that metabolism only plays a modest role in the clearance of moxonidine in humans.
Biological Half-Life
Plasma elimination half life is 2.2 - 2.3 hours while renal elimination half life is 2.6-2.8 hours.
毒性/毒理 (Toxicokinetics/TK)
Protein Binding
About 10% of moxonidine is bound to plasma proteins.
参考文献
J Cardiovasc Pharmacol.2004Feb;43(2):306-11;J Hum Hypertens.1997 Oct;11(10):629-35;Br J Pharmacol.1995 Feb;114(4):751-4.
其他信息
Moxonidine is an organohalogen compound and a member of pyrimidines.
Moxonidine is a new-generation centrally acting antihypertensive drug approved for the treatment of mild to moderate essential hypertension. It is suggested to be effective in cases where other agents such as thiazides, beta-blockers, ACE inhibitors, and calcium channel blockers are not appropriate or irresponsive. As well, moxonidine has been shown to present blood pressure-independent beneficial effects on insulin resistance syndrome.
Drug Indication
For the treatment of mild to moderate essential or primary hypertension. Effective as most first-line antihypertensives when used as monotherapy.
FDA Label
Treatment of hypertension
Mechanism of Action
Stimulation of central alpha 2-adrenergic receptors is associated with sympathoadrenal suppression and subsequent reduction of blood pressure. As this class was further explored it was discovered that sympathoadrenal activity can also be suppressed by a second pathway with a newly discovered drug target specific to imidazolines. Specifically, moxonidine binds the imidazoline receptor subtype 1 (I1) and to a lesser extent αlpha-2-adrenoreceptors in the RSV causing a reduction of sympathetic activity, reducing systemic vascular resistance and thus arterial blood pressure. Moreover, since alpha-2-adrenergic receptors are considered the primary molecular target that facilitates the most common side effects of sedation and dry mouth that are elicited by most centrally acting antihypertensives, moxonidine differs from these other centrally acting antihypertensives by demonstrating only low affinity for central alpha-2-adrenoceptors compared to the aforementioned I1-imidazoline receptors.
Pharmacodynamics
Antihypertensive agent whose site of action is the Central Nervous System (CNS), specifically involving interactions with I1- imidazoline and alpha-2-adrenergic rececptors within the rostral ventrolateral medulla (RSV).
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C9H12CLN5O
分子量
241.68
精确质量
241.073
CAS号
75438-57-2
相关CAS号
Moxonidine hydrochloride;75536-04-8;Moxonidine-d4;1794811-52-1
PubChem CID
4810
外观&性状
Typically exists as solid at room temperature
密度
1.5±0.1 g/cm3
沸点
364.7±52.0 °C at 760 mmHg
熔点
40-43 °C(lit.)
闪点
174.3±30.7 °C
蒸汽压
0.0±0.8 mmHg at 25°C
折射率
1.681
LogP
0.84
tPSA
71.43
氢键供体(HBD)数目
2
氢键受体(HBA)数目
4
可旋转键数目(RBC)
3
重原子数目
16
分子复杂度/Complexity
275
定义原子立体中心数目
0
SMILES
CC1=NC(OC)=C(NC2=NCCN2)C(Cl)=N1
InChi Key
WPNJAUFVNXKLIM-UHFFFAOYSA-N
InChi Code
InChI=1S/C9H12ClN5O/c1-5-13-7(10)6(8(14-5)16-2)15-9-11-3-4-12-9/h3-4H2,1-2H3,(H2,11,12,15)
化学名
4-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-2-methylpyrimidin-5-amine
别名
BDF-5895; BDF5895;BDF 5895;Cynt; Nucynt; BE 5895; BE-5895; BE5895
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO:24 mg/mL (99.3 mM)
Water:<1 mg/mL
Ethanol:2 mg/mL (8.3 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2 mg/mL (8.28 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.0 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2 mg/mL (8.28 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.0mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2 mg/mL (8.28 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.0 mg/mL 澄清 DMSO 储备液加入900 μL 玉米油中,混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 4.1377 mL 20.6885 mL 41.3770 mL
5 mM 0.8275 mL 4.1377 mL 8.2754 mL
10 mM 0.4138 mL 2.0689 mL 4.1377 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们