规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
GPX4/Glutathione Peroxidase 4
|
---|---|
体外研究 (In Vitro) |
在一组 821 个癌细胞(WM88、LOX-IMVI、CJM、U257、CAKI2、A498、HT1080、MC38、PANC02)中,ML-210 显示出细胞杀伤能力。 ML-210 是一种需要细胞的前药。 ML-210 针对 BJeLR (HRASV12)、BJeH-LT 和 DRD 细胞系的 IC50 分别为 71 nM、272 nM 和 107 nM(不含 HRASV12)[2]。
|
体内研究 (In Vivo) |
鉴于传统的抗癌疗法不能显著改善癌症三阴性患者的预后,迫切需要高效的新方法。在此,通过将由单宁酸(TA)、博莱霉素(BLM)和Fe3+形成的金属酚网络与负载谷胱甘肽过氧化物酶4(GPX4)抑制剂(ML210)的中空介孔普鲁士蓝(HMPB)纳米立方体混合,HMPB/ML210@TA-BLM-Fe3+(HMTBF)纳米复合物的制备有利于TNBC中的铁下垂/凋亡协同作用。在细胞内降解过程中,TA介导的Fe3+/Fe2+转化可以引发芬顿反应,大大上调细胞内的活性氧水平,从而诱导脂质过氧化的积累,从而导致铁细胞死亡;同时,释放的ML210有效地抑制了GPX4的活性,从而激活了铁下垂途径。此外,Fe2+与BLM的螯合作用导致BLM在肿瘤部位原位中毒,然后引发有效的细胞凋亡,与铁中毒协同作用,用于肿瘤治疗。因此,HMTBF在4T1荷瘤小鼠模型中关于肿瘤生长抑制的优越体内抗肿瘤功效得到了证实,表明纳米制剂可以作为有效的铁下垂和凋亡诱导剂,用于组合TNBC治疗。https://pubmed.ncbi.nlm.nih.gov/34623753/
|
参考文献 | |
其他信息 |
Synthetic lethal screening is a chemical biology approach to identify small molecules that selectively kill oncogene-expressing cell lines with the goal of identifying pathways that provide specific targets against cancer cells. We performed a high-throughput screen of 303,282 compounds from the National Institutes of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR) against immortalized BJ fibroblasts expressing HRAS(G12V) followed by a counterscreen of lethal compounds in a series of isogenic cells lacking the HRAS(G12V) oncogene. This effort led to the identification of two novel molecular probes (PubChem CID 3689413, ML162 and CID 49766530, ML210) with nanomolar potencies and 4-23-fold selectivities, which can potentially be used for identifying oncogene-specific pathways and targets in cancer cells.[2]
We recently discovered that inhibition of the lipid peroxidase GPX4 can selectively kill cancer cells in a therapy-resistant state through induction of ferroptosis. Although GPX4 lacks a conventional druggable pocket, covalent small-molecule inhibitors are able to overcome this challenge by reacting with the GPX4 catalytic selenocysteine residue to eliminate enzymatic activity. Unfortunately, all currently-reported GPX4 inhibitors achieve their activity through reactive chloroacetamide groups. We demonstrate that such chloroacetamide-containing compounds are poor starting points for further advancement given their promiscuity, instability, and low bioavailability. Development of improved GPX4 inhibitors, including those with therapeutic potential, requires the identification of new electrophilic chemotypes and mechanisms of action that do not suffer these shortcomings. Here, we report our discovery that nitrile oxide electrophiles, and a set of remarkable chemical transformations that generates them in cells from masked precursors, provide an effective strategy for selective targeting of GPX4. Our results, which include structural insights, target engagement assays, and diverse GPX4-inhibitor tool compounds, provide critical insights that may galvanize development of improved compounds that illuminate the basic biology of GPX4 and therapeutic potential of ferroptosis induction. In addition, our discovery that nitrile oxide electrophiles engage in highly selective cellular interactions and are bioavailable in their masked forms may be relevant for targeting other currently undruggable proteins, such as those revealed by recent proteome-wide ligandability studies.[1] |
分子式 |
C22H20CL2N4O4
|
---|---|
分子量 |
475.326
|
精确质量 |
474.086
|
元素分析 |
C, 55.59; H, 4.24; Cl, 14.92; N, 11.79; O, 13.46
|
CAS号 |
1360705-96-9
|
相关CAS号 |
1360705-96-9;
|
PubChem CID |
49766530
|
外观&性状 |
White to light yellow solid powder
|
密度 |
1.4±0.1 g/cm3
|
沸点 |
644.7±55.0 °C at 760 mmHg
|
闪点 |
343.7±31.5 °C
|
蒸汽压 |
0.0±1.9 mmHg at 25°C
|
折射率 |
1.636
|
LogP |
2.39
|
tPSA |
95.4
|
氢键供体(HBD)数目 |
0
|
氢键受体(HBA)数目 |
6
|
可旋转键数目(RBC) |
4
|
重原子数目 |
32
|
分子复杂度/Complexity |
635
|
定义原子立体中心数目 |
0
|
InChi Key |
VIBHJPDPEVVDTB-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C22H20Cl2N4O4/c1-14-20(28(30)31)19(25-32-14)22(29)27-12-10-26(11-13-27)21(15-2-6-17(23)7-3-15)16-4-8-18(24)9-5-16/h2-9,21H,10-13H2,1H3
|
化学名 |
[4-[Bis(4-chlorophenyl)methyl]piperazin-1-yl]-(5-methyl-4-nitro-1,2-oxazol-3-yl)methanone
|
别名 |
CID 49766530; ML-210; CID-49766530; [4-[bis(4-chlorophenyl)methyl]piperazin-1-yl]-(5-methyl-4-nitro-1,2-oxazol-3-yl)methanone; ML210; (4-(bis(4-chlorophenyl)methyl)piperazin-1-yl)(5-methyl-4-nitroisoxazol-3-yl)methanone; CHEMBL1951048; BRD7528; ML 210; CID49766530; ML210.
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ~25 mg/mL (~52.60 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: 2.5 mg/mL (5.26 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浮液;超声助溶。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (4.38 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1038 mL | 10.5190 mL | 21.0380 mL | |
5 mM | 0.4208 mL | 2.1038 mL | 4.2076 mL | |
10 mM | 0.2104 mL | 1.0519 mL | 2.1038 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。