Methoxyfenozide

别名: 甲氧虫酰肼; N-叔丁基-N'-(3-甲氧基-2-甲基苯甲酰基)-3,5-二甲基苯甲酰肼; 甲氧虫酰肼标准品;甲氧虫酰肼(美满) 标准品;甲氧虫酰肼标准品
目录号: V20159 纯度: ≥98%
Methoxyfenozide 是一种二酰基肼类杀虫剂,与鳞翅目蜕皮激素受体 (EcR) 的结合选择性 (Kd=0.5 nM) 高于与二萜 EcR (Kd=124 nM) 的结合。
Methoxyfenozide CAS号: 161050-58-4
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
50mg
100mg
Other Sizes

Other Forms of Methoxyfenozide:

  • Methoxyfenozide-d9
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
Methoxyfenozide 是一种二酰基肼类杀虫剂,与鳞翅目蜕皮激素受体 (EcR) 的结合选择性 (Kd=0.5 nM) 高于与二萜 EcR (Kd=124 nM) 的结合。甲氧虫酰肼对甜菜夜蛾、草地贪夜蛾、T. ni、O. nubilalis、L. pomonella、H. zea、H. virescens 的新生幼虫具有致死作用,LC50 分别为 0.35、0.2、0.11、0.18、0.21。 0.79、3.12 毫克/升。
生物活性&实验参考方法
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Forty two groups of Sprague Dawley rats (up to 5/sex/group) were dosed by oral gavage with either (14)C-t-butyl-, (14)C-A-Ring-, or (14)C-B-Ring-Methoxyfenozide at doses of 10 or 1000 mg/kg. Some treatments were performed by combining appropriate amount of non-labeled or (13)C-labeled Methoxyfenozide to the (14)C-Methoxyfenozide. Three types of experiments were performed: (1) determination of excretion, distribution, and mass balance 120 hours post dose; (2) pharmacokinetics in blood (Cmax and 1/2 Cmax); and (3) tissue distribution of (14)C at Cmax and 1/2 Cmax. The (14)C was mostly excreted during the first 24 hours with 58-77% of the administered dose recovered in the feces and 4-9% of the dose found in urine from day 0-1. The position of the carbon label did not alter the excretion profile significantly. Approximately, 0.07-0.23% of (14)C remained in the tissues, and 0.03-0.11% were recovered as (14)C-CO2 and volatile organics from day 0-5 post dose. The maximum concentrations of (14)C-Methoxyfenozide in the blood were observed at 15-30 minutes post dose for all three (14)C-labels. The highest tissue concentration of (14)C was in the liver. The (14)C residues were rapidly cleared from all organs in the rat. Based on the recovery of (14)C from the bile, urine, tissues and carcasses, 62-70% of the administered dose was systemically absorbed.
The tissue distribution of radioactivity was investigated after a single dose of A-ring-labelled or t-butyl-labelled methoxyfenozide administered by gavage (at Cmax, 1/2 Cmax and at 5 days after dosing at 10 or 1000 mg/kg bw), and after a single dose of B-ring-labelled methoxyfenozide (5 days after dosing at 10 mg/kg bw). Tissue distribution was also investigated after dosing with A-ring-labelled methoxyfenozide at 10 mg/kg bw as a pulse dose (5 days after dosing) and as a repeated dose (at 0.25 hr after the last dose, at about Cmax). Similar results were seen in all experiments. The absorbed radioactivity was widely distributed, with the highest concentration of absorbed radioactivity found in the liver at 0.5-2 hr after dosing (the higher concentrations found in the stomach and intestinal tract were attributed to largely unabsorbed material). ... Clearance from the body was extensive; 5 days after a single dose of 10 mg/kg bw, the highest percentage of radioactivity, representing <0.1% of the administered dose, was found in the liver.
The biliary excretion of radiolabel after a single oral dose of ((14)C-A-ring) methoxyfenozide at 10 mg/kg was investigated in bile-duct cannulated rats. Biliary excretion was rapid, with 22% (females) and 50% (males) of the administered dose being excreted within 12 hr. Overall, 38% (females) and 64% (males) of the radiolabel was excreted in bile within 72 hr. Considerable variability between individual animals was seen in cannulated female rats (bile, 13-55%; and urine, 5-43% within 72 hr), but the overall amount absorbed (in bile, urine, carcass and tissues) was similar for all four females (56-67%). Taking the biliary component into account, the overall extent of oral absorption of methoxyfenozide at a dose of 10 mg/kg bw was 60-70% in both sexes.
The dermal absorption in vivo of methoxyfenozide formulated as an aqueous flow-able liquid (RH-112,485 2F) or as a wettable powder (RH-112,485 280WP) was tested in rats in a study that was designed to comply with US EPA guidelines and GLP. The methoxyfenozide administered was uniformly labelled with (14)C on the methoxyphenyl ring; this is acceptable given the limited cleavage seen in studies of oral metabolism. To provide data on exposure to the concentrated product and in-use-dilutions, groups of four male Crl : CD BR rats received radiolabelled methoxyfenozide at three aqueous dilutions (0.025, 0.25, or 2.5% w/v), applied in a volume of 100 uL to a shaved area of about 10 sq cm for 1, 10, or 24 hr. Systemically absorbed methoxyfenozide was defined as the radiolabel found in the carcass, urine (plus urine funnel and cage washes), feces, and whole blood. For RH-112,485 2F, the total mean recovery of radiolabel in all groups ranged from 98% to 114%. After an exposure of 1, 10, or 24 hr to (14)C-labelled RH-112,485 2F formulation diluted in water to a concentration of 2.5, 0.25, or 0.025% w/v, a small amount of radiolabel (<1-4%) was systemically absorbed. For RH-112,485 280 WP, three animals with poor recoveries were excluded from further analysis. The total mean recovery of radiolabel in all groups ranged from 85% to 110%. After an exposure of 1, 10, or 24 hr to (14)C-labelled RH-112,485 280 WP at a concentration of 2.5, 0.25, or 0.025% w/v, <1-2% of radiolabel was systemically absorbed. Findings were similar for both formulations. The amount of radiolabel that was systemically absorbed did not increase linearly between the 10-hr and 24-hr exposure periods, indicating that most of the radiolabel that remained in or on the skin after washing was tightly bound and was not available for systemic absorption. This study shows that methoxyfenozide is poorly absorbed (<4%) after dermal exposure to either of the formulated products or in-use dilutions. The low rate of dermal absorption may be attributed to very low solubility in water (3.3 mg/L at 20 °C).
Metabolism / Metabolites
Forty two groups of Sprague Dawley rats (up to 5/sex/group) were dosed by oral gavage with either (14)C-t-butyl-, (14)C-A-Ring-, or (14)C-B-Ring-Methoxyfenozide at doses of 10 or 1000 mg/kg. ... (14)C- Methoxyfenozide was extensively metabolized into 32 metabolites (26 identified) isolated from urine and feces, and 24 metabolites were found and characterized from the bile. Seven metabolites comprised of 59-69% and 42-56% of the dose at 10 and 1000 mg/kg dose levels, respectively. Parent comprised of 14-26% and 30-39% of the administered (14)C at 10 and 1000 mg/kg dose levels, respectively.
Parent compound was found only in the feces (not in the urine or bile) and comprised 14-26% and 30-39% of the administered dose for animals at the lower and higher doses, respectively, indicating that animals at the lower dose metabolized a greater fraction of the administered dose compared with animals at the higher dose. Seven metabolites (M10, M14, M16, M22, M24, M28, M30) were found to be present in feces plus urine each at >2% of the administered dose. The predominant metabolites were M14 (desmethylated parent) and M24 (hydroxy methyl derivative). Parent compound plus these seven metabolites accounted for 74-90% of the administered dose (in feces plus urine) in all groups. For each of these groups, the total of parent plus identified metabolites accounted for >/= 83% of the administered dose, i.e. the metabolic profile of methoxyfenozide in feces and urine was well defined. Less than 5% of the administered dose was present as metabolites formed from the cleavage of the amide bridge.
Two metabolites, M16 (A-ring glucuronide of M14) and M26 (A-ring glucuronide of M24), were the main metabolites in bile. M16 was present at 13% and 18% in males and females respectively, M26 was present at 5% in males and 11% in females, all other metabolites represented <3% of the administered dose. The presence of M16 and M26 at higher concentrations in bile than in feces indicates that these two metabolites were subject to subsequent hydrolysis.
The primary /metabolic/ pathway probably involves demethylation of the A-ring methoxy moiety to form the corresponding phenol (M14), which is conjugated with glucuronic acid to form M16. Hydroxylation on the B-ring methyl moieties is also a significant metabolic pathway. Cleavage of methoxyfenozide to release either of the rings or the t-butyl group is only a minor pathway; none of the cleaved metabolites (M06, M07, M13, M32-36) were present at >2% of the dose. In males, however, cleaved metabolites represented up to about 50% of the metabolites found in urine. There was an indication that males cleaved more of the absorbed dose than did females, on the basis of urinary metabolite patterns.
Results for the animals receiving diets containing methoxyfenozide for 14 days plus a single dose of (14C) methoxyfenozide at 10 mg/kg bw by gavage showed evidence of induction of metabolism. Concentrations of M22, M28 and M30 increased, while concentrations of M14 and M24 were reduced relative to concentrations in animals that received only a single dose of (14C) methoxyfenozide at 10 mg/kg bw.
毒性/毒理 (Toxicokinetics/TK)
Non-Human Toxicity Values
LC50 Rat inhalation >4.3 mg/L/4 hr
LD50 Rat skin 2000 mg/kg
LD50 Rat oral 5000 mg/kg
LD50 Mouse oral 5000 mg/kg
其他信息
Methoxyfenozide is a carbohydrazide that is hydrazine in which the amino hydrogens have been replaced by 3-methoxy-2-methylbenzoyl, 3,5-dimethylbenzoyl, and tert-butyl groups respectively. It has a role as an environmental contaminant, a xenobiotic and an insecticide. It is a carbohydrazide and a monomethoxybenzene. It is functionally related to a N'-benzoyl-N-(tert-butyl)benzohydrazide.
Methoxyfenozide has been reported in Ganoderma lucidum with data available.
Methoxyfenozide ia a diacylhydrazine insecticide that binds with very high affinity to the ecdysone receptor complex where it functions as a potent agonist, or mimic, of the insect molting hormone, 20-hydroxyecdysone (20E). Methoxyfenozide exhibits high insecticidal efficacy against a wide range of important caterpillar pests, including many species of lepidopteran insects.including navel orangeworm, peach twig borer, leafrollers, loopers, armyworms and citrus leafminers.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C22H28N2O3
分子量
368.4693
精确质量
368.209
CAS号
161050-58-4
相关CAS号
Methoxyfenozide-d9;2469014-53-5
PubChem CID
105010
外观&性状
White powder
密度
1.1±0.1 g/cm3
沸点
530.3±60.0 °C at 760 mmHg
熔点
204-205ºC
闪点
274.5±32.9 °C
蒸汽压
0.0±1.5 mmHg at 25°C
折射率
1.539
LogP
5.59
tPSA
58.64
氢键供体(HBD)数目
1
氢键受体(HBA)数目
3
可旋转键数目(RBC)
4
重原子数目
27
分子复杂度/Complexity
518
定义原子立体中心数目
0
SMILES
O=C(C1C([H])=C(C([H])([H])[H])C([H])=C(C([H])([H])[H])C=1[H])N(C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])N([H])C(C1C([H])=C([H])C([H])=C(C=1C([H])([H])[H])OC([H])([H])[H])=O
InChi Key
QCAWEPFNJXQPAN-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H28N2O3/c1-14-11-15(2)13-17(12-14)21(26)24(22(4,5)6)23-20(25)18-9-8-10-19(27-7)16(18)3/h8-13H,1-7H3,(H,23,25)
化学名
N'-tert-butyl-N'-(3,5-dimethylbenzoyl)-3-methoxy-2-methylbenzohydrazide
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~100 mg/mL (~271.39 mM)
溶解度 (体内实验)
配方 1 中的溶解度: 2.5 mg/mL (6.78 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浮液;超声助溶。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 2.5 mg/mL (6.78 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (6.78 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.7139 mL 13.5696 mL 27.1393 mL
5 mM 0.5428 mL 2.7139 mL 5.4279 mL
10 mM 0.2714 mL 1.3570 mL 2.7139 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们