规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
TRAIL (IC50 = 64.6±9.1 µM)
|
---|---|
体外研究 (In Vitro) |
尽管 LY303511 与 LY294002 具有结构相似性(除了吗啉环中的 -NH 被 -O 取代),但它不会有效抑制 PI3K。当细胞用 LY303511 处理时,钙黄绿素扩散上升至与 LY294002 相似的水平。 LY303511 会抑制 AKT 磷酸化,但根据免疫印迹法测定,这种效应与间隙连接细胞间通讯 (GJIC) 的增加并不相符 [1]。通过激活 H2O2-MAPK 和上调死亡受体,药物 LY303511 使 SHEP-1 神经母细胞瘤细胞更容易受到 TRAIL 的影响。将 SHEP-1 细胞暴露于不同浓度的 LY303511 (LY30)、TRAIL 以及两者的组合(LY303511 预孵育 1 小时,然后暴露于 TRAIL 4 小时)。尽管 LY303511(12.5、25 或 50 μM)处理对细胞活力没有影响,但 SHEP-1 细胞对 TRAIL 有反应(25、50 和 100 ng 时存活分数减少 10%、15% 和 30%) /mL)。 LY303511 (25 M) 和 TRAIL (50 ng/mL) 组合 4 小时,然后孵育细胞,具有很强的协同效应(LY303511+TRAIL 使活细胞减少 40%,而单独使用 TRAIL 则减少 15%) )[2]。对于 PI3K 活性,LY303511 作为阴性对照物质。 MIN6 胰岛素瘤细胞中的渥曼青霉素 (100 nM) 对全细胞外向 K+ 电流没有影响,但 LY294002 和 LY303511 以剂量依赖性方式可逆地阻断电流(IC50 分别为 9.0±0.7 μM 和 64.6±9.1 μM)。 Beta 细胞具有高水平的 Kv2.1 和 Kv1.4 表达。在 Kv2.1 转染的 tsA201 细胞中,LY294002 和 LY303511 分别可逆地抑制电流约 90% 和 41%。 LY303511抑制电流的IC50为64.6±9.1 µM,最大抑制浓度为500 µM(每个浓度下n≥5个细胞)[3]。
|
体内研究 (In Vivo) |
当肿瘤体积达到约 150 mm3 时,腹膜内施用载体或 LY303511(10 mg/kg/天),此时 35 只小鼠已形成肿瘤。由于估计平均肿瘤体积不可靠,因此在 21 天后对数据进行审查,因为超过 15% 的小鼠由于肿瘤过度生长而需要进入睡眠状态。通过以 10 mg/kg/天的剂量施用 LY303511,可以阻止 PC-3 肿瘤在体内生长[4]。
|
酶活实验 |
LY303511 在结构上与 LY294002 相同,只是吗啉环中的 -NH 被 -O 取代,并且不会有效抑制 PI3K。用 LY303511 处理细胞会导致钙黄绿素扩散增加,与 LY294002 的水平相似。通过免疫印迹测量,LY303511 增加间隙连接细胞间通讯 (GJIC) 的能力不会与 AKT 磷酸化的抑制同时发生。
|
细胞实验 |
人神经母细胞瘤 SHEP-1 细胞保存在补充有 10% 胎牛血清和 1% 青霉素的 DMEM 中。在典型的生存测定中,LY303511(12.5、25 和 50 μM)、TRAIL(25、50 和 100 ng/mL)以及两者的组合(用 LY303511 预孵育 1 小时,然后用 TRAIL 孵育 4 小时)暴露于铺在24孔板中的SHEP-1细胞(每孔8×104)24小时。结晶紫测定用于测定细胞毒性。药物暴露后,用 PBS 清洗细胞,然后与 200 μL 结晶紫溶液一起孵育 20 分钟。用蒸馏水除去过量的结晶紫溶液后,将剩余的晶体溶解在20%乙酸中。使用自动 ELISA 读数器,使用 595 nm 波长处的吸光度来评估活力。使用 2,000 单位/mL 过氧化氢酶、4 μM JNK 抑制剂 SP600125、10 μM p38 抑制剂 SB202190、20 μM MAPK/ERK 激酶 (MEK) 抑制剂 PD98059、50 μM caspase-8 抑制剂 Z-IETD-FMK 进行类似的细胞活力实验或泛半胱天冬酶抑制剂 Z-VAD-FMK,或死亡受体阻断抗体(4 μg/mL 抗 DR4 或 1 μg/mL 抗 DR5),或在用小干扰 RNA (siRNA) 转染的细胞中用于沉默 JNK 和 ERK分别表达。在添加 TRAIL 之前,将细胞与 LY303511 和适当的抑制剂或过氧化氢酶预孵育 1 小时。
|
动物实验 |
In zebrafish model, LY303511 inhibits CAL 27-xenografted tumor growth. Therefore, LY303511 displays antiproliferation potential against oral cancer cells in vitro and in vivo. https://pubmed.ncbi.nlm.nih.gov/31115172/
Human prostate adenocarcinoma (PC-3) cells (ATCC CRL-1435) are cultured and implanted (1×10~6 cells) in 20% Matrigel per athymic NCR nude mouse by subcutaneous injection at the flank. Inoculated mice are subdivided into four groups of 10. Administration of vehicle or LY303511, 10 mg/kg/day, is begun (day 1) when tumors reach ~150 mm3 (n=35), and tumor volumes are measured for 30 days at the indicated time points.[4] |
参考文献 |
|
其他信息 |
Loss of gap junctional intercellular communication (GJIC) between cancer cells is a common characteristic of malignant transformation. This communication is mediated by connexin proteins that make up the functional units of gap junctions. Connexins are highly regulated at the protein level and phosphorylation events play a key role in their trafficking and degradation. The metastasis suppressor breast cancer metastasis suppressor 1 (BRMS1) upregulates GJIC and decreases phosphoinositide-3-kinase (PI3K) signaling. On the basis of these observations, we set out to determine whether there was a link between PI3K and GJIC in tumorigenic and metastatic cell lines. Treatment of cells with the well-known PI3K inhibitor LY294002, and its structural analogue LY303511, which does not inhibit PI3K, increased homotypic GJIC; however, we found the effect to be independent of PI3K/AKT inhibition. We show in multiple cancer cell lines of varying metastatic capability that GJIC can be restored without enforced expression of a connexin gene. In addition, while levels of connexin 43 remained unchanged, its relocalization from the cytosol to the plasma membrane was observed. Both LY294002 and LY303511 increased the activity of protein kinase A (PKA). Moreover, PKA blockade by the small molecule inhibitor H89 decreased the LY294002/LY303511-mediated increase in GJIC. Collectively, our findings show a connection between PKA activity and GJIC mediated by PI3K-independent mechanisms of LY294002 and LY303511. Manipulation of these signaling pathways could prove useful for antimetastatic therapy.[1]
We recently reported that LY294002 (LY29) and LY303511 (LY30) sensitized tumor cells to drug-induced apoptosis independent of the phosphoinositide 3-kinase/Akt pathway. Here, we investigated the mechanism of LY30-induced sensitization of human neuroblastoma cells to TRAIL-mediated apoptosis. We provide evidence that LY30-induced increase in intracellular H(2)O(2) up-regulates the expression of TRAIL receptors (DR4 and DR5) in SHEP-1 cells by activating mitogen-activated protein kinases, resulting in a significant amplification of TRAIL-mediated caspase-8 processing and activity, cytosolic translocation of cytochrome c, and cell death. Involvement of the death receptors was further confirmed by the ability of blocking antibodies against DR4 and/or DR5 to inhibit LY30-induced TRAIL sensitization. Pharmacologic inhibition of c-Jun NH(2) terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activation by SP600125 and PD98059, respectively, blocked LY30-induced increase in sensitization to TRAIL-mediated death. Finally, small interfering RNA-mediated gene silencing of JNK and ERK inhibited LY30-induced increase in surface expression of DR4 and DR5, respectively. These data show that JNK and ERK are two crucial players involved in H(2)O(2)-mediated increase in TRAIL sensitization of tumor cells upon exposure to LY30 and underscore a novel mode of action of this inactive analogue of LY29. Our findings could have implications for the use of LY30 and similar compounds for enhancing the apoptotic sensitivity of neuroblastoma cells that often become refractory to chemotherapy.[3] Mammalian target of rapamycin (mTOR), a serine/threonine kinase, regulates cell growth and proliferation in part via the activation of p70 S6 kinase (S6K). Rapamycin is an antineo-plastic agent that, in complex with FKBP12, is a specific inhibitor of mTOR through interaction with its FKBP12-rapamycin binding domain, thereby causing G(1) cell cycle arrest. However, cancer cells often develop resistance to rapamycin, and alternative inhibitors of mTOR are desired. 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) blocks mTOR kinase activity, but it also inhibits phosphatidylinositol 3-kinase (PI3K), an enzyme that regulates cellular functions other than proliferation. We hypothesized that a close structural analog, 2-piperazinyl-8-phenyl-4H-1-benzopyran-4-one (LY303511) might inhibit mTOR-dependent cell proliferation without unwanted effects on PI3K. In human lung epithelial adenocarcinoma (A549) cells, LY303511, like rapamycin, inhibited mTOR-dependent phosphorylation of S6K, but not PI3K-dependent phosphorylation of Akt. LY303511 blocked proliferation in A549 as well as in primary pulmonary artery smooth muscle cells, without causing apoptosis. In contrast to rapamycin, LY303511 reduced G(2)/M progression as well as G(2)/M-specific cyclins in A549 cells. Consistent with an additional mTOR-independent kinase target, LY303511 inhibited casein kinase 2 activity, a known regulator of G(1) and G(2)/M progression. In addition to its antiproliferative effect in vitro, LY303511 inhibited the growth of human prostate adenocarcinoma tumor implants in athymic mice. Given its inhibition of cell proliferation via mTOR-dependent and independent mechanisms, LY303511 has therapeutic potential with antineoplastic actions that are independent of PI3K inhibition.[4] |
分子式 |
C₁₉H₁₉CLN₂O₂
|
|
---|---|---|
分子量 |
342.82
|
|
精确质量 |
342.113
|
|
元素分析 |
C, 74.49; H, 5.92; N, 9.14; O, 10.44
|
|
CAS号 |
2070014-90-1
|
|
相关CAS号 |
LY 303511;154447-38-8; 854127-90-5 (2HCl); 2070014-90-1 (HCl)
|
|
PubChem CID |
78357796
|
|
外观&性状 |
White to light yellow solid
|
|
tPSA |
41.6
|
|
氢键供体(HBD)数目 |
2
|
|
氢键受体(HBA)数目 |
4
|
|
可旋转键数目(RBC) |
2
|
|
重原子数目 |
24
|
|
分子复杂度/Complexity |
464
|
|
定义原子立体中心数目 |
0
|
|
SMILES |
Cl.O1C2C(=CC=CC=2C(C=C1N1CCNCC1)=O)C1C=CC=CC=1
|
|
InChi Key |
QGVSIVYHHKLHPY-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C19H18N2O2.ClH/c22-17-13-18(21-11-9-20-10-12-21)23-19-15(7-4-8-16(17)19)14-5-2-1-3-6-14;/h1-8,13,20H,9-12H2;1H
|
|
化学名 |
8-phenyl-2-piperazin-1-ylchromen-4-one;hydrochloride
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (7.29 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (7.29 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.9170 mL | 14.5849 mL | 29.1698 mL | |
5 mM | 0.5834 mL | 2.9170 mL | 5.8340 mL | |
10 mM | 0.2917 mL | 1.4585 mL | 2.9170 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
![]() LY30 can reduce cell proliferation and sensitize cells treated with low doses of vincristine to apoptosis via an increase in caspase activity.Cancer Res.2005 Jul 15;65(14):6264-74. th> |
---|
![]() LY30 can reduce cell proliferation and sensitize cells treated with low doses of vincristine to apoptosis via an increase in caspase activity.Cancer Res.2005 Jul 15;65(14):6264-74. td> |
![]() LY30 inhibits the colony-forming ability of cells treated with vincristine.Cancer Res.2005 Jul 15;65(14):6264-74. td> |