规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
体外研究 (In Vitro) |
洛伐他汀(10 μM;72 小时)可有效降低 HepG2 细胞活力[2]。在 HepG2 细胞中,洛伐他汀(10 μM;48 小时)会导致细胞凋亡 [2]。
|
||
---|---|---|---|
体内研究 (In Vivo) |
肝脏水解无活性的内酯洛伐他汀,产生活性的 f3-羟基酸形式。该主要代谢物抑制 HMG-CoA 还原酶。 Ki 是一纳米。人血浆蛋白与洛伐他汀及其β-羟基酸代谢物紧密结合。洛伐他汀可穿过胎盘屏障和血脑屏障[3]。洛伐他汀会适度升高 HDL 胆固醇,同时显着降低含载脂蛋白 B 的脂蛋白,特别是 LDL 胆固醇,并将血浆甘油三酯降至较低水平 [4]。
|
||
细胞实验 |
细胞活力测定[2]
细胞类型: HepG2 细胞 测试浓度: 10 μM 孵育时间: 72 hrs(小时) 实验结果:有效降低 HepG2 细胞的活力。 |
||
动物实验 |
|
||
药代性质 (ADME/PK) |
Lovastatin Cmax was found to be 3.013ng/mL with a Tmax of 3.36 hours. Plasma concentrations of total radioactivity (lovastatin plus 14C-metabolites) peaked at 2 hours and declined rapidly to about 10% of peak by 24 hours postdose. Absorption of lovastatin, estimated relative to an intravenous reference dose, in each of four animal species tested, averaged about 30% of an oral dose. In animal studies, after oral dosing, lovastatin had high selectivity for the liver, where it achieved substantially higher concentrations than in non-target tissues. Lovastatin undergoes extensive first-pass extraction in the liver, its primary site of action, with subsequent excretion of drug equivalents in the bile. As a consequence of extensive hepatic extraction of lovastatin, the availability of drug to the general circulation is low and variable. In a single dose study in four hypercholesterolemic patients, it was estimated that less than 5% of an oral dose of lovastatin reaches the general circulation as active inhibitors. Following administration of lovastatin tablets the coefficient of variation, based on between-subject variability, was approximately 40% for the area under the curve (AUC) of total inhibitory activity in the general circulation. The peak concentrations of lovastatin when a dose of 10-40 mg is administered are reported to range from 1.04-4.03 ng/ml and an AUC of 14-53 ng.h/ml. This indicates that lovastatin presents a dose-dependent pharmacokinetic profile. When lovastatin was given under fasting conditions, plasma concentrations of both active and total inhibitors were on average about two-thirds those found when lovastatin was administered immediately after a standard test meal. Genetic differences in the OATP1B1 (Organic-Anion-Transporting Polypeptide 1B1) hepatic transporter encoded by the SCLCO1B1 gene (Solute Carrier Organic Anion Transporter family member 1B1) have been shown to impact lovastatin pharmacokinetics. Evidence from pharmacogenetic studies of the c.521T>C single nucleotide polymorphism (SNP) showed that lovastatin Cmax and AUC were 340 and 286% higher, respectively, for individuals homozygous for 521CC compared to homozygous 521TT individuals. The 521CC genotype is also associated with a marked increase in the risk of developing myopathy, likely secondary to increased systemic exposure. Other statin drugs impacted by this polymorphism include [rosuvastatin], [pitavastatin], [atorvastatin], [simvastatin], and [pravastatin]. While specific dosage instructions are not included in the available product monographs for lovastatin, individuals with the above-mentioned c.521CC OATP1B1 genotype should be monitored for development of adverse effects from increased exposure to the drug, such as muscle pain and risk of rhabdomyolysis, particularly at higher doses.
Following an oral dose of 14C-labeled lovastatin to man, 10% of the dose was excreted in urine and 83% in feces. The latter represents absorbed drug excreted in bile, together with unabsorbed drug. Lovastatin is able to cross the blood-brain barrier and placenta. /MILK/ It is not known whether lovastatin is excreted in human milk. Following an oral dose of (14)C-labeled lovastatin in man, 10% of the dose was excreted in urine and 83% in feces. The latter represents absorbed drug equivalents excreted in bile, as well as any unabsorbed drug. Plasma concentrations of total radioactivity (lovastatin plus (14)C-metabolites) peaked at 2 hours and declined rapidly to about 10% of peak by 24 hours postdose. Absorption of lovastatin, estimated relative to an intravenous reference dose, in each of four animal species tested, averaged about 30% of an oral dose. In animal studies, after oral dosing, lovastatin had high selectivity for the liver, where it achieved substantially higher concentrations than in non-target tissues. Lovastatin undergoes extensive first-pass extraction in the liver, its primary site of action, with subsequent excretion of drug equivalents in the bile. As a consequence of extensive hepatic extraction of lovastatin, the availability of drug to the general circulation is low and variable. In a single dose study in four hypercholesterolemic patients, it was estimated that less than 5% of an oral dose of lovastatin reaches the general circulation as active inhibitors. Following administration of lovastatin tablets the coefficient of variation, based on between-subject variability, was approximately 40% for the area under the curve (AUC) of total inhibitory activity in the general circulation. Both lovastatin and its beta-hydroxyacid metabolite are highly bound (> 95%) to human plasma proteins. Animal studies demonstrated that lovastatin crosses the blood-brain and placental barriers. Peak plasma concentrations of both active and total inhibitors were attained within 2 to 4 hours of dose administration. Lovastatin is given as a lactone prodrug and thus, in order to produce its mechanism of action, it is required to be converted to the active beta-hydroxy form. This drug activation process does not seem to be related to CYP isoenzyme activity but rather to be controlled by the activity of serum paraoxonase. Lovastatin is metabolized by the microsomal hepatic enzyme system (Cytochrome P-450 isoform 3A4). The major active metabolites present in human plasma are the β-hydroxy acid of lovastatin, its 6'-hydroxy, 6'-hydroxymethyl, and 6'-exomethylene derivatives. The uptake of lovastatin by the liver is enhanced by the activity of OATP1B1. Lovastatin is metabolized by the microsomal hepatic enzyme system (Cytochrome P-450 isoform 3A4). The major active metabolites present in human plasma are the beta-hydroxy acid of lovastatin, its 6'-hydroxy, 6'-hydroxymethyl, and 6'-exomethylene derivatives. The major active metabolites present in human plasma are the beta-hydroxyacid of lovastatin, its 6'-hydroxy derivative, and two additional metabolites. Lovastatin has known human metabolites that include 3-Hydroxylovastatin and 6'beta-Hydroxylovastatin. Lovastatin is hepatically metabolized in which the major active metabolites are the beta-hydroxyacid of lovastatin, the 6'-hydroxy derivative, and two additional metabolites. Route of Elimination: Lovastatin undergoes extensive first-pass extraction in the liver, its primary site of action, with subsequent excretion of drug equivalents in the bile. 83% of the orally administered dose is excreted in bile and 10% is excreted in urine. Half Life: 5.3 hours Lovastatin half-life is reported to be of 13.37 hours. The elimination half-life of the hydroxy acid form of lovastatin is reported to be of 0.7-3 hours. |
||
毒性/毒理 (Toxicokinetics/TK) |
Lovastatin therapy is associated with mild, asymptomatic and usually transient serum aminotransferase elevations. In summary analyses of large scale studies with prospective monitoring, ALT elevations above normal occurred in 3% to 5% of patients, but were above 3 times the upper limit of normal (ULN) in only 0.4% compared to 0.1% of placebo recipients. These elevations were more common with higher doses of lovastatin, being greater than 3 times ULN in 0.1% of patients receiving 20 mg daily, 0.9% with 40 mg and 1.5% with 80 mg daily. Most of these elevations were self-limited and did not require dose modification, although discontinuation is recommended for any elevation above 10 times and for persistent elevations above 5 times the ULN. Lovastatin is also associated with frank, clinically apparent hepatic injury, but cases are rare. The onset of clinical injury ranges from a few weeks to several years. The pattern of injury is typically cholestatic, but can be hepatocellular. Rash, fever and eosinophilia are uncommon as are autoimmune features. The injury usually resolves rapidly upon stopping lovastatin, but instances of fatal acute liver failure and of prolonged cholestasis have been reported (Case 1).
The traditional Chinese medication known as red yeast rice which is used to treat hyperlipidemia has been shown to contain monacolin K, a natural component that is chemically identical to lovastatin, perhaps explaining its efficacy in reducing cholesterol levels. Red yeast rice has also been implicated in cases of acute liver injury and myopathies that are similar to those linked to lovastatin. In some instances cross-sensitivity to hepatic injury has been shown between red yeast rice products and lovastatin. Likelihood score: B (likely cause of clinically apparent liver injury). ◉ Summary of Use during Lactation No relevant published information exists on the use of lovastatin during breastfeeding. Because of a concern with disruption of infant lipid metabolism, the consensus is that lovastatin should not be used during breastfeeding. However, others have argued that children homozygous for familial hypercholesterolemia are treated with statins beginning at 1 year of age, that statins have low oral bioavailability, and risks to the breastfed infant are low, especially with rosuvastatin and pravastatin.[1] Until more data become available, an alternate drug may be preferred, especially while nursing a newborn or preterm infant. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Both lovastatin and its β-hydroxy acid metabolite are highly bound (>95%) to human plasma proteins, largely due to its lipophilicity. Animal studies demonstrated that lovastatin crosses the blood-brain and placental barriers. |
||
参考文献 | |||
其他信息 |
Lovastatin can cause developmental toxicity according to state or federal government labeling requirements.
Lovastatin is a fatty acid ester that is mevastatin carrying an additional methyl group on the carbobicyclic skeleton. It is used in as an anticholesteremic drug and has been found in fungal species such as Aspergillus terreus and Pleurotus ostreatus (oyster mushroom). It has a role as an Aspergillus metabolite, a prodrug, an anticholesteremic drug and an antineoplastic agent. It is a polyketide, a statin (naturally occurring), a member of hexahydronaphthalenes, a delta-lactone and a fatty acid ester. It is functionally related to a (S)-2-methylbutyric acid and a mevastatin. Lovastatin, also known as the brand name product Mevacor, is a lipid-lowering drug and fungal metabolite derived synthetically from a fermentation product of Aspergillus terreus. Originally named Mevinolin, lovastatin belongs to the statin class of medications, which are used to lower the risk of cardiovascular disease and manage abnormal lipid levels by inhibiting the endogenous production of cholesterol in the liver. More specifically, statin medications competitively inhibit the enzyme hydroxymethylglutaryl-coenzyme A (HMG-CoA) Reductase, which catalyzes the conversion of HMG-CoA to mevalonic acid and is the third step in a sequence of metabolic reactions involved in the production of several compounds involved in lipid metabolism and transport including cholesterol, low-density lipoprotein (LDL) (sometimes referred to as "bad cholesterol"), and very low-density lipoprotein (VLDL). Prescribing of statin medications is considered standard practice following any cardiovascular events and for people with a moderate to high risk of development of CVD, such as those with Type 2 Diabetes. The clear evidence of the benefit of statin use coupled with very minimal side effects or long term effects has resulted in this class becoming one of the most widely prescribed medications in North America. Lovastatin and other drugs from the statin class of medications including [atorvastatin], [pravastatin], [rosuvastatin], [fluvastatin], and [simvastatin] are considered first-line options for the treatment of dyslipidemia. Increasing use of the statin class of drugs is largely due to the fact that cardiovascular disease (CVD), which includes heart attack, atherosclerosis, angina, peripheral artery disease, and stroke, has become a leading cause of death in high-income countries and a major cause of morbidity around the world. Elevated cholesterol levels, and in particular, elevated low-density lipoprotein (LDL) levels, are an important risk factor for the development of CVD. Use of statins to target and reduce LDL levels has been shown in a number of landmark studies to significantly reduce the risk of development of CVD and all-cause mortality. Statins are considered a cost-effective treatment option for CVD due to their evidence of reducing all-cause mortality including fatal and non-fatal CVD as well as the need for surgical revascularization or angioplasty following a heart attack. Evidence has shown that even for low-risk individuals (with <10% risk of a major vascular event occurring within 5 years) statins cause a 20%-22% relative reduction in major cardiovascular events (heart attack, stroke, coronary revascularization, and coronary death) for every 1 mmol/L reduction in LDL without any significant side effects or risks. While all statin medications are considered equally effective from a clinical standpoint, [rosuvastatin] is considered the most potent; doses of 10 to 40mg [rosuvastatin] per day were found in clinical studies to result in a 45.8% to 54.6% decrease in LDL cholesterol levels, while lovastatin has been found to have an average decrease in LDL-C of 25-40%. Potency is thought to correlate to tissue permeability as the more lipophilic statins such as lovastatin are thought to enter endothelial cells by passive diffusion, as opposed to hydrophilic statins such as [pravastatin] and [rosuvastatin] which are taken up into hepatocytes through OATP1B1 (organic anion transporter protein 1B1)-mediated transport. Despite these differences in potency, several trials have demonstrated only minimal differences in terms of clinical outcomes between statins. Lovastatin is a HMG-CoA Reductase Inhibitor. The mechanism of action of lovastatin is as a Hydroxymethylglutaryl-CoA Reductase Inhibitor. Lovastatin is a commonly used cholesterol lowering agent (statin) that is associated with mild, asymptomatic and self-limited serum aminotransferase elevations during therapy and rarely with clinically apparent acute liver injury. Lovastatin has been reported in Auxarthron umbrinum, Monascus ruber, and other organisms with data available. Lovastatin is a lactone metabolite isolated from the fungus Aspergillus terreus with cholesterol-lowering and potential antineoplastic activities. Lovastatin is hydrolyzed to the active beta-hydroxyacid form, which competitively inhibits 3-hydroxyl-3-methylgutarylcoenzyme A (HMG-CoA) reductase, an enzyme involved in cholesterol biosynthesis. In addition, this agent may induce tumor cell apoptosis and inhibit tumor cell invasiveness, possibly by inhibiting protein farnesylation and protein geranylgeranylation, and may arrest cells in the G1 phase of the cell cycle. The latter effect sensitizes tumor cells to the cytotoxic effects of ionizing radiation. Lovastatin is a cholesterol-lowering agent that belongs to the class of medications called statins. It was the second agent of this class discovered. It was discovered by Alfred Alberts and his team at Merck in 1978 after screening only 18 compounds over 2 weeks. The agent, also known as mevinolin, was isolated from the fungi Aspergillus terreus. Research on this compound was suddenly shut down in 1980 and the drug was not approved until 1987. Interesting, Akira Endo at Sankyo Co. (Japan) patented lovastatin isolated from Monascus ruber four months before Merck. Lovastatin was found to be 2 times more potent than its predecessor, mevastatin, the first discovered statin. Like mevastatin, lovastatin is structurally similar to hydroxymethylglutarate (HMG), a substituent of HMG-Coenzyme A (HMG-CoA), a substrate of the cholesterol biosynthesis pathway via the mevalonic acid pathway. Lovastatin is a competitive inhibitor of HMG-CoA reductase with a binding affinity 20,000 times greater than HMG-CoA. Lovastatin differs structurally from mevastatin by a single methyl group at the 6' position. Lovastatin is a prodrug that is activated by in vivo hydrolysis of the lactone ring. It, along with mevastatin, has served as one of the lead compounds for the development of the synthetic compounds used today. A fungal metabolite isolated from cultures of Aspergillus terreus. The compound is a potent anticholesteremic agent. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It also stimulates the production of low-density lipoprotein receptors in the liver. Lovastatin is indicated to reduce the risk of myocardial infarction, unstable angina, and the need for coronary revascularization procedures in individuals without symptomatic cardiovascular disease, average to moderately elevated total-C and LDL-C, and below average HDL-C. It is indicated as an intervention alternative in individuals presenting dyslipidemia at risk of developing atherosclerotic vascular disease. The administration of this agent should be accompanied by the implementation of a fat and cholesterol-restricted diet. Therapy with lipid-altering agents should be a component of multiple risk factor intervention in those individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Lovastatin is indicated as an adjunct to diet for the reduction of elevated total-C and LDL-C levels in patients with primary hypercholesterolemia (Types IIa and IIb2), when the response to diet restricted in saturated fat and cholesterol and to other nonpharmacological measures alone has been inadequate. Lovastatin is also indicated to slow the progression of coronary atherosclerosis in patients with coronary heart disease as part of a treatment strategy to lower total-C and LDL-C to target levels. Lovastatin is indicated as an adjunct to diet to reduce total-C, LDL-C and apolipoprotein B levels in adolescent boys and girls with Heterozygous Familial Hypercholesterolemia (HeFH) who are at least one year post-menarche, 10 to 17 years of age, with HeFH if after an adequate trial of diet therapy the following findings are present: LDL-C remains greater than 189 mg/dL or LDL-C remains greater than 160 mg/dL and there is a positive family history of premature cardiovascular disease or two or more other CVD risk factors are present in the adolescent patient. Before administering lovastatin, it is important to rule out the presence of secondary causes of hypercholesterolemia and a lipid profile should be performed. Prescribing of statin medications is considered standard practice following any cardiovascular events and for people with a moderate to high risk of development of CVD. Statin-indicated conditions include diabetes mellitus, clinical atherosclerosis (including myocardial infarction, acute coronary syndromes, stable angina, documented coronary artery disease, stroke, trans ischemic attack (TIA), documented carotid disease, peripheral artery disease, and claudication), abdominal aortic aneurysm, chronic kidney disease, and severely elevated LDL-C levels. Lovastatin is a lactone which is readily hydrolyzed _in vivo_ to the corresponding β-hydroxyacid and strong inhibitor of HMG-CoA reductase, a hepatic microsomal enzyme which catalyzes the conversion of HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A ) to mevalonate, an early rate-limiting step in cholesterol biosynthesis. At therapeutic lovastatin doses, HMG-CoA reductase is not completely blocked, thereby allowing biologically necessary amounts of mevalonate to be available. Because the conversion of HMG-CoA to mevalonate is an early step in the biosynthetic pathway for cholesterol, therapy with lovastatin would not be expected to cause an accumulation of potentially toxic sterols. Lovastatin acts primarily in the liver, where decreased hepatic cholesterol concentrations stimulate the upregulation of hepatic low density lipoprotein (LDL) receptors which increase hepatic uptake of LDL. Lovastatin also inhibits hepatic synthesis of very low density lipoprotein (VLDL). The overall effect is a decrease in plasma LDL and VLDL and a significant reduction in the risk of development of CVD and all-cause mortality. A significant effect on LDL-C reduction was seen within 2 weeks of initiation of lovastatin, and the maximum therapeutic response occurred within 4-6 weeks. The response was maintained during continuation of therapy. Single daily doses given in the evening were more effective than the same dose given in the morning, perhaps because cholesterol is synthesized mainly at night. When therapy with lovastatin is stopped, total cholesterol has been shown to return to pre-treatment levels. In vitro and in vivo animal studies also demonstrate that lovastatin exerts vasculoprotective effects independent of its lipid-lowering properties, also known as the pleiotropic effects of statins. This includes improvement in endothelial function, enhanced stability of atherosclerotic plaques, reduced oxidative stress and inflammation, and inhibition of the thrombogenic response. Statins have also been found to bind allosterically to β2 integrin function-associated antigen-1 (LFA-1), which plays an important role in leukocyte trafficking and in T cell activation. Lovastatin has been reported to have beneficial effects on certain cancers. This includes a multi-factorial stress-triggered cell death (apoptosis) and DNA degradation response in breast cancer cells. It has also been shown to inhibit histone deacetylase 2 (HDAC2) activity and increase the accumulation of acetylated histone-H3 and the expression of p21(WAF/CIP) in human cancer cells, suggesting that statins might serve as novel HDAC inhibitors for cancer therapy and chemoprevention. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins), atorvastatin, cerivastatin, fluvastatin, pravastatin, lovastatin and simvastatin, reduce atherogenesis and cardiovascular morbidity. Besides, there is growing evidence that statins have immunomodulatory activities. Statins downregulate the expression of adhesion molecules, intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MAC-1) and lymphocyte function-associated antigen-1 (LFA-1), on leucocytes and endothelial cells and, through binding to LFA-1, interfere with ICAM-1-LFA-1 interaction, which is crucial for activation of lymphocytes by antigen-presenting cells, ingress of leucocytes into the inflammation sites and immunologic cytotoxicity. Statins inhibit the inducible expression of major histocompatibility complex class II in several cell types including macrophages and downregulate the expression of T-helper-1 (Th1) chemokine receptors on T cells, leading further to inhibition of activation of lymphocytes and their infiltration into the inflammation sites. Statins block the induction of inducible nitric oxide synthase and the expression of several proinflammatory cytokines such as tumor necrosis factor-alpha and interferon-gamma in macrophages and possess antioxidant effects. These agents inhibit the proliferation of immunocytes and the activation of natural killer cells. Lovastatin, is a cholesterol-lowering agent isolated from a strain of Aspergillus terreus. After oral ingestion, lovastatin, which is an inactive lactone, is hydrolyzed to the corresponding beta-hydroxy acid form. This principal metabolite is a specific inhibitor of 3-hydroxy-3- methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, which is an early and ratelimiting step in the biosynthesis of cholesterol. Lovastatin is a member of Statins, which are beneficial in a lot of immunologic cardiovascular diseases and T cell-mediated autoimmune diseases. Kv1.3 channel plays important roles in the activation and proliferation of T cells, and have become attractive target for immune-related disorders. The present study was designed to examine the block effect of Lovastatin on Kv1.3 channel in human T cells, and to clarify its new immunomodulatory mechanism. We found that Lovastatin inhibited Kv1.3 currents in a concentration- and voltage-dependent manner, and the IC50 for peak, end of the pulse was 39.81 +/- 5.11, 6.92 +/- 0.95 uM, respectively. Lovastatin also accelerated the decay rate of current inactivation and negatively shifted the steady-state inactivation curves concentration-dependently, without affecting the activation curve. However, 30 uM Lovastatin had no apparent effect on KCa current in human T cells. Furthermore, Lovastatin inhibited Ca(2+) influx, T cell proliferation as well as IL-2 production. The activities of NFAT1 and NF-kB p65/50 were down-regulated by Lovastatin, too. At last, Mevalonate application only partially reversed the inhibition of Lovastatin on IL-2 secretion, and the siRNA against Kv1.3 also partially reduced this inhibitory effect of Lovastatin. In conclusion, Lovastatin can exert immunodulatory properties through the new mechanism of blocking Kv1.3 channel. |
分子式 |
C24H36O5
|
|
---|---|---|
分子量 |
404.54
|
|
精确质量 |
404.256
|
|
CAS号 |
75330-75-5
|
|
相关CAS号 |
Lovastatin (Standard);75330-75-5;Lovastatin-d9;Lovastatin-d3;1002345-93-8
|
|
PubChem CID |
53232
|
|
外观&性状 |
White to off-white solid powder
|
|
密度 |
1.1±0.1 g/cm3
|
|
沸点 |
559.2±50.0 °C at 760 mmHg
|
|
熔点 |
175°C
|
|
闪点 |
185.3±23.6 °C
|
|
蒸汽压 |
0.0±3.4 mmHg at 25°C
|
|
折射率 |
1.532
|
|
LogP |
4.07
|
|
tPSA |
72.83
|
|
氢键供体(HBD)数目 |
1
|
|
氢键受体(HBA)数目 |
5
|
|
可旋转键数目(RBC) |
7
|
|
重原子数目 |
29
|
|
分子复杂度/Complexity |
666
|
|
定义原子立体中心数目 |
8
|
|
SMILES |
CC[C@H](C)C(=O)O[C@H]1C[C@H](C=C2[C@H]1[C@H]([C@H](C=C2)C)CC[C@@H]3C[C@H](CC(=O)O3)O)C
|
|
InChi Key |
PCZOHLXUXFIOCF-BXMDZJJMSA-N
|
|
InChi Code |
InChI=1S/C24H36O5/c1-5-15(3)24(27)29-21-11-14(2)10-17-7-6-16(4)20(23(17)21)9-8-19-12-18(25)13-22(26)28-19/h6-7,10,14-16,18-21,23,25H,5,8-9,11-13H2,1-4H3/t14-,15-,16-,18+,19+,20-,21-,23-/m0/s1
|
|
化学名 |
[(1S,3R,7S,8S,8aR)-8-[2-[(2R,4R)-4-hydroxy-6-oxooxan-2-yl]ethyl]-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] (2S)-2-methylbutanoate
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.18 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (6.18 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (6.18 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 30% PEG400+0.5% Tween80+5% propylene glycol:30 mg/mL 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.4719 mL | 12.3597 mL | 24.7194 mL | |
5 mM | 0.4944 mL | 2.4719 mL | 4.9439 mL | |
10 mM | 0.2472 mL | 1.2360 mL | 2.4719 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT04297033 | Not yet recruiting | Drug: Lovastatin Drug: Placebo |
Cerebral Arteriovenous Malformation | Beijing Tiantan Hospital | January 1, 2021 | Phase 2 |
NCT01527669 | Completed | Drug: LipoCol Forte capsules Drug: Lovastatin Tablet |
Healthy Subjects | National Taiwan University Hospital | February 2012 | Phase 4 |
NCT00585052 | Terminated Has Results | Drug: Paclitaxel Drug: Lovastatin |
Ovarian Cancer | University of Iowa | August 2003 | Phase 2 |
NCT01346670 | Completed | Drug: LipoCol and Mevacor | Healthy Volunteer | Taipei Medical University WanFang Hospital |
October 2006 | Phase 4 |
FLV, SMV and LOV dose-dependently and selectively reduce viability of mouse hepatoma cells. Primary mouse hepatocytes (PH) or mouse hepatoma cells (Hepa1-6) were incubated in the presence of fluvastatin (FLV; A), simvastatin (SMV; B), rosuvastatin (ROV; C), atorvastatin (ATV; D), or lovastatin (LOV; E) at 1, 10 or 100 μM for 72 h. Cell viability was measured by MTT assay. *P≤0.05 for statin vs. solvent incubated cells; #P≤0.05 for statin incubated PH vs. Hepa1-6 cells. (F) Primary human hepatocytes (PHhum) were incubated in the presence of FLV, SMV, ROV, ATV, or LOV at 10 μM for 72 h. Cell viability was measured by MTT assay. *P≤0.05 for statin vs. solvent incubated cells. td> |
FLV, SMV and LOV efficiently and selectively reduce viability of human hepatoma cell lines. (A) Human hepatoma cells (Huh7; HepG2) were incubated in the presence of fluvastatin (FLV), simvastatin (SMV), rosuvastatin (ROV), atorvastatin (ATV), or lovastatin (LOV) at 10 μM for 72 h. Cell viability was measured by MTT assay. *P≤0.05 for statin vs. solvent incubated cells. (B) Apoptosis induction was measured in Huh7 and HepG2 cells after 48 h statin incubation by caspase-3 activity assay. *P≤0.05 for statin vs. solvent incubated cells. (C) Proliferation of Huh7 and HepG2 cells was measured continuously over a period of 66 h using the impedance-based xCELLigence real-time cell analyzing system. Results are expressed as mean cell index normalized to the time-point of seeding to 96-well E-plates. (D Expression of proliferating cell nuclear antigen (PCNA) was measured in Huh7 and HepG2 human hepatoma cells by real-time RT-PCR. *P≤0.05. td> |
p53 expression of human hepatoma cell lines correlates to their susceptibility towards statins. (A) p53 protein expression was measured in human hepatoma cells (Huh7; HepG2) by Western blotting. (B) p53 protein expression was measured by Western blotting in Huh7 cells with stable knockdown of p53 (shp53) or Huh7 cells expressing control shRNA directed against E.coli polymerase (shneg). Huh7 shneg or Huh7 shp53 cells were incubated in the presence of 10 μM fluvastatin (FLV), simvastatin (SMV) or lovastatin (LOV) for 72 h. Cell viability was measured by MTT assay (C), apoptosis induction was measured by caspase-3 activity assay (D). Expression of proliferating cell nuclear antigen (PCNA) was measured by real-time RT-PCR. *P≤0.05 for Huh7 shneg vs. Huh7 shp53 cells. td> |