Loratinib (PF-06463922; Lorlatinib; lorbrena)

别名: Lorbrena; PF06463922; PF-6463922; PF6463922; PF 6463922; PF 06463922; PF-06463922;Lorlatinib; 1454846-35-5; Lorbrena; Lorviqua; lorlatinibum; PF06463922 劳拉替尼; PF-06463922
目录号: V0613 纯度: ≥98%
Loratinib(原名 Lorlatinib,PF-06463922;商品名:Lorbrena)是一种强效、口服生物利用度、脑渗透性、ATP 竞争性、ALK/ROS1 双重抑制剂,具有潜在的抗肿瘤活性。
Loratinib (PF-06463922; Lorlatinib; lorbrena) CAS号: 1454846-35-5
产品类别: ALK
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Loratinib (PF-06463922; Lorlatinib; lorbrena):

  • 醋酸劳拉替尼
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Loratinib(原名 Lorlatinib,PF-06463922;商品名:Lorbrena)是一种强效、口服生物利用度、脑渗透性、ATP 竞争性、ALK/ROS1 双重抑制剂,具有潜在的抗肿瘤活性。它抑制 ROS1、ALK (WT) 和 ALK (L1196M),Ki 值分别<0.02 nM、<0.07 nM 和 0.7 nM。 Loratinib 已被 FDA 批准用于治疗间变性淋巴瘤激酶 (ALK) 阳性转移性非淋巴瘤患者。小细胞肺癌。给药后,PF-06463922 结合并抑制 ALK 和 ROS1 激酶,从而破坏 ALK 和 ROS1 介导的信号传导,最终抑制肿瘤细胞生长。 PF-06463922 具有治疗 ROS1 融合阳性癌症的潜力,包括那些需要具有中枢神经系统穿透特性的药物,以及克服由 ROS1 突变驱动的克唑替尼耐药性。
生物活性&实验参考方法
靶点
ALKL1196 (IC50 = 15-43 nM); ALKG1269A (IC50 = 14-80 nM); ALK1151Tins (IC50 = 38-50 nM); ALKG1202R (IC50 = 77-113 nM); ALKWT (IC50 <0.07 nM); ALKL1996M (IC50 = 0.6 nM); ALKG1269A (IC50 = 0.9 nM); ALK1151Tins (IC50 = 0.1 nM); ALKL1152R (IC50 <0.1 nM); ALKS1206Y (IC50 = 0.2 nM); ALKC1156Y (IC50 <0.1 nM); ALKF1174L (IC50 <0.1nM)
体外研究 (In Vitro)
体外活性:PF-06463922 表现出针对 ALK 和大量 ALK 临床突变的显着细胞活性,IC50 范围为 0.2 nM-77 nM。PF-06463922 显着抑制含有 SLC34A2 的 HCC78 人 NSCLC 细胞的细胞增殖并诱导细胞凋亡-ROS1融合和表达人CD74-ROS1的BaF3-CD74-ROS1细胞。 PF-06463922 还显示出有效的生长抑制活性,并诱导含有非突变 ALK 或突变 ALK 融合的 NSCLC 细胞凋亡激酶测定:重组人野生型和突变 ALK 激酶结构域蛋白(氨基酸 1093-1411)产生于-使用杆状病毒表达,通过 MgATP 自磷酸化预激活,并使用微流体迁移率变化测定法测定激酶活性。反应含有 1.3 nM 野生型 ALK 或 0.5 nM 突变型 ALK(适合反应 1 小时后肽底物产生 15-20% 磷酸化)、3 μM 5-FAM-KKSRGDYMTMQIG-CONH2)、5 mM MgCl2 和25 mM Hepes(pH 7.1)中的 ATP 浓度(Km)。动力学和晶体学研究显示该抑制剂具有 ATP 竞争性。 Ki 值是通过将转化率 (%) 拟合到竞争性抑制方程来计算的。 ROS1 酶的测定方法如上所述,但使用 0.25 nM 重组人 ROS1 催化结构域(氨基酸 1883-2347)。使用 206 激酶面板评估激酶抑制剂选择性。细胞测定:将细胞接种到 96 孔板中含有 10% FBS 的生长培养基中,并在 37°C 下培养过夜。第二天,将连续稀释的 Lorlatinib 或适当的对照添加到指定孔中,并将细胞在 37°C 下孵育 72 小时。进行 CellTiter-Glo 测定以确定相对细胞数。 IC 50 值通过使用四参数分析方法的浓度-响应曲线拟合来计算。
体内研究 (In Vivo)
如前所述,LSL-FIG-ROS1;Cdkn2a−/−;LSL-Luc 小鼠通过颅内立体定向注射 Adeno-Cre 启动 GBM 肿瘤的从头发生。如下所述,使用 BLI 监测肿瘤发展。一旦肿瘤达到给定大小(107p-1·s-1·cm-2·sr-1),将动物随机纳入载体对照或用指定剂量的Lorlatinib进行3、7或14天治疗。药物通过皮下植入的 Alzet 渗透泵给药。治疗后,处死小鼠,对 GBM 肿瘤进行显微解剖,并将组织在液氮中快速冷冻。剩余的大脑进行组织学处理。 在大鼠中,PF-06463922 显示出低血浆清除率、中等分布体积、合理的半衰期、p-糖蛋白 1 介导的外排倾向低以及 100% 的生物利用度。在体内,PF-06463922 通过抑制 ROS1 磷酸化和下游信号分子,以及抑制肿瘤中的细胞周期蛋白 Cyclin D1,在表达人 CD74-ROS1 和 Fig-ROS1 的 NIH3T3 异种移植模型中显示出细胞减灭性抗肿瘤功效。在体内,PF-06463922还在携带表达EML4-ALK、EML4-ALK-L1196M、EML4-ALK-G1269A、EML4-ALK-G1202R或NPM-ALK的肿瘤异种移植物的小鼠中表现出显着的抗肿瘤活性。
酶活实验
微流体迁移率变动测定用于测量重组人野生型和突变型 ALK 激酶结构域蛋白(氨基酸 1093-1411)中的激酶活性,这些蛋白是通过杆状病毒表达和 MgATP 自磷酸化内部产生的。反应含有 3 μM 5-FAM-KKSRGDYMTMQIG-CONH2)、5 mM MgCl2、1.3 nM 野生型 ALK 或 0.5 nM 突变型 ALK(适合在反应 1 小时后产生 15-20% 的肽底物磷酸化),以及25 mM Hepes(pH 7.1)中的 ATP 浓度(Km)。动力学和晶体学研究的结果表明该抑制剂具有 ATP 竞争性。将转化率 (%) 拟合到竞争性抑制方程即可得出 Ki 值。检测 ROS1 酶的程序与检测 ALK 的程序相同,不同之处在于使用 0.25 nM 重组人 ROS1 催化结构域(氨基酸 1883-2347)。 206 激酶组用于评估激酶抑制剂的选择性。
细胞实验
在 96 孔板中,将细胞接种在含有 10% FBS 的生长培养基中,并在 37°C 下孵育整晚。第二天将连续稀释的 Lorlatinib 或合适的对照添加到指定的孔中后,将细胞在 37°C 下孵育 72 小时。为了确定相对细胞数,进行了 CellTiter-Glo 测定。使用四参数分析方法来拟合浓度-响应曲线并确定IC50值。
动物实验
In LSL-FIG-ROS1;Cdkn2a−/−;LSL-Luc mice, de novoGBM tumorigenesis is induced by intracranial stereotactic injections of Adeno-Cre, as previously reported. BLI is used to track the development of tumors as will be discussed below. Animals are randomly assigned to either vehicle control or 3-, 7-, or 14-day treatments with the prescribed doses of lerlatinib once tumors reach a specific size (107 p -1·s -1·cm -2·sr -1). The medication is delivered via s.c. implanted Alzet osmotic pumps. Following therapy, GBM tumors are microdissected, tissues are flash-frozen in liquid N2, and mice are killed. For histology, the remaining brains are processed.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
The median lorlatinib Tmax was 1.2 hours (0.5 to 4 hours) following a single oral 100 mg dose and 2 hours (0.5 to 23 hours) following 100 mg orally once daily at steady state. The mean absolute bioavailability is 81% (90% CI 75.7%, 86.2%) after oral administration compared to intravenous administration. Administration of lorlatinib with a high fat, high-calorie meal (approximately 1000 calories with 150 calories from protein, 250 calories from carbohydrate, and 500 to 600 calories from fat) had no clinically meaningful effect on lorlatinib pharmacokinetics.
Following a single oral 100 mg dose of radiolabeled lorlatinib, 48% of the radioactivity was recovered in urine (<1% as unchanged) and 41% in feces (about 9% as unchanged).
The mean (CV%) steady-state volume of distribution (Vss) was 305 L (28%) following a single intravenous dose.
The mean oral clearance (CL/F) was 11 L/h (35%) following a single oral 100 mg dose and increased to 18 L/h (39%) at steady state, suggesting autoinduction.
Metabolism / Metabolites
In vitro, lorlatinib is metabolized primarily by CYP3A4 and UGT1A4, with minor contribution from CYP2C8, CYP2C19, CYP3A5, and UGT1A3. In plasma, a benzoic acid metabolite (M8) of lorlatinib resulting from the oxidative cleavage of the amide and aromatic ether bonds of lorlatinib accounted for 21% of the circulating radioactivity in a human [14C] mass balance study. The oxidative cleavage metabolite, M8, is pharmacologically inactive.
Biological Half-Life
The mean plasma half-life (t½) of lorlatinib was 24 hours (40%) after a single oral 100 mg dose of lorlatinib.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
In large early clinical trials, elevations in serum aminotransferase levels occurred in up to 28% of patients treated with standard doses of lorlatinib but were above 5 times ULN in only 2% of patients and rarely led to early discontinuation of therapy. The abnormalities were typically transient, asymptomatic and not associated with jaundice. In prelicensure clinical trials there were no instances of clinically apparent liver injury. In contrast, most other ALK inhibitors have been linked to instances of acute liver injury which can be severe and even fatal. The liver injury typically arises within 4 to 12 weeks of starting therapy and presents with marked elevations in serum aminotransferase levels followed by jaundice and progressive hepatic dysfunction. While lorlatinib has not been associated with instances of severe liver injury, it has had limited clinical use.
Likelihood score: E* (unproven but suspected rare cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of lorlatinib during breastfeeding. The manufacturer recommends that breastfeeding be discontinued during lorlatinib therapy and for 7 days after the last dose.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
In vitro, lorlatinib was 66% bound to plasma proteins at a concentration of 2.4 µM. The blood-to-plasma ratio was 0.99.
参考文献

[1]. J Med Chem . 2014 Jun 12;57(11):4720-44.

[2].Mol Cancer Ther (2013) 12 (11_Supplement): A277.

[3]. Mol Cancer Ther (2013) 12 (11_Supplement): C253.

其他信息
Pharmacodynamics
Based on data from Study B7461001, exposure-response relationships for Grade 3 or 4 hypercholesterolemia and for any Grade 3 or 4 adverse reaction were observed at steady-state exposures achieved at the recommended dosage, with higher probability of the occurrence of adverse reactions with increasing lorlatinib exposure. In 295 patients who received lorlatinib at the recommended dosage of 100 mg once daily and had an ECG measurement in the same Study B7461001, the maximum mean change from baseline for their PR interval was 16.4 ms (2-sided 90% upper confidence interval [CI] 19.4 ms). Among the 284 patients with PR interval <200 ms at baseline, 14% had PR interval prolongation ≥200 ms after starting use with lorlatinib. The prolongation of PR interval occurred in a concentration-dependent manner and atrioventricular block occurred in 1% of patients. Finally, in 275 patients who received lorlatinib at the recommended dosage in the activity-estimating portion of Study B7461001, no large mean increases from baseline in the QTcF interval (i.e., >20 ms) were detected.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C21H19FN6O2
分子量
406.41
精确质量
406.155
元素分析
C, 62.06; H, 4.71; F, 4.67; N, 20.68; O, 7.87
CAS号
1454846-35-5
相关CAS号
1924207-18-0 (acetate);2135926-03-1;1454846-35-5;2306217-6 (hydrate);
PubChem CID
71731823
外观&性状
White to off-white solid powder
密度
1.4±0.1 g/cm3
沸点
675.0±55.0 °C at 760 mmHg
闪点
362.1±31.5 °C
蒸汽压
0.0±2.1 mmHg at 25°C
折射率
1.687
LogP
1.24
tPSA
110.06
氢键供体(HBD)数目
1
氢键受体(HBA)数目
7
可旋转键数目(RBC)
0
重原子数目
30
分子复杂度/Complexity
700
定义原子立体中心数目
1
SMILES
FC1C([H])=C([H])C2C(N(C([H])([H])[H])C([H])([H])C3C(=C(C#N)N(C([H])([H])[H])N=3)C3C([H])=NC(=C(C=3[H])O[C@]([H])(C([H])([H])[H])C=2C=1[H])N([H])[H])=O
InChi Key
IIXWYSCJSQVBQM-LLVKDONJSA-N
InChi Code
InChI=1S/C21H19FN6O2/c1-11-15-7-13(22)4-5-14(15)21(29)27(2)10-16-19(17(8-23)28(3)26-16)12-6-18(30-11)20(24)25-9-12/h4-7,9,11H,10H2,1-3H3,(H2,24,25)/t11-/m1/s1
化学名
(16R)-19-amino-13-fluoro-4,8,16-trimethyl-9-oxo-17-oxa-4,5,8,20-tetrazatetracyclo[16.3.1.02,6.010,15]docosa-1(22),2,5,10(15),11,13,18,20-octaene-3-carbonitrile
别名
Lorbrena; PF06463922; PF-6463922; PF6463922; PF 6463922; PF 06463922; PF-06463922;Lorlatinib; 1454846-35-5; Lorbrena; Lorviqua; lorlatinibum; PF06463922
HS Tariff Code
2934.99.09.01
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~81 mg/mL (~199.3 mM)
Water: <1 mg/mL
Ethanol: ~30 mg/mL warmed (~73.8 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.15 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 2.5 mg/mL (6.15 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (6.15 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: ≥ 2.5 mg/mL (6.15 mM) (饱和度未知) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

配方 5 中的溶解度: 2% DMSO+30% PEG 300+ddH2O: 5mg/mL

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.4606 mL 12.3028 mL 24.6057 mL
5 mM 0.4921 mL 2.4606 mL 4.9211 mL
10 mM 0.2461 mL 1.2303 mL 2.4606 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03126916 Active
Recruiting
Drug: Busulfan
Drug: Lorlatinib
Ganglioneuroblastoma
Neuroblastoma
Children's Oncology Group May 14, 2018 Phase 3
NCT03909971 Active
Recruiting
Drug: Lorlatinib Carcinoma, Non-Small-Cell Lung Pfizer April 28, 2019 Phase 2
NCT04362072 Active
Recruiting
Drug: Lorlatinib Carcinoma
Non-Small-Cell Lung
Pfizer September 29, 2020 Phase 4
NCT05144997 Recruiting Drug: Lorlatinib Non-Small-Cell Lung Cancer
NSCLC
Pfizer December 28, 2021 Phase 4
NCT05948462 Recruiting Drug: Lorlatinib
Drug: Pemetrexed
Non-small Cell Lung Cancer
Lung Cancer
SCRI Development Innovations,
LLC
October 2023 Phase 2
生物数据图片
  • Loratinib (PF-06463922)

    PF-06463922 is a potent inhibitor of ROS1.. 2015 Mar 17; 112(11): 3493–3498.

  • Loratinib (PF-06463922)

    PF-06463922 inhibits crizotinib-induced ROS1 mutants.. 2015 Mar 17; 112(11): 3493–3498.

  • Loratinib (PF-06463922)

    (A) Comparison of ROS1 crystal structures bound with PF-06463922 (green) and crizotinib (magenta). (B) PF-06463922 interactions with ROS1 and the PF-06463922 ROS1 binding site.. 2015 Mar 17; 112(11): 3493–3498.

  • Loratinib (PF-06463922)

    PF-06463922 inhibits ROS1 fusion-driven tumorigenesis in vivo.. 2015 Mar 17; 112(11): 3493–3498.

  • Loratinib (PF-06463922)

    PF-06463922 inhibits FIG-ROS1–mediated tumor growth in a model of GBM. (A) Representative photomicrographs of bioluminescent imaging of a mouse genetically engineered to develop a GBM and its response to a 7- and 14-d treatment with PF-06463922. (B) Decrease in BLI output 7 and 14 d post treatment.. 2015 Mar 17; 112(11): 3493–3498.

相关产品
联系我们