规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
靶点 |
LPA1 ( Ki = 0.34 μM ); LPA3 ( Ki = 0.93 μM ); LPA2 ( Ki = 6.5 μM )
|
||
---|---|---|---|
体外研究 (In Vitro) |
体外活性:Kil6425 优先抑制 LPA1 和 LPA3 介导的反应,但对 LPA2 仅具有中等影响。 Ki16425 在 THP-1 细胞、3T3 成纤维细胞和 A431 细胞中抑制 LPA 诱导的 Ca(2+) 反应,但在 PC-12 细胞和 HL-60 细胞中仅具有边际效应,这意味着 Ki16425 似乎是一种评估特定 LPA 受体参与 LPA 短期反应的有用工具。 Ki16425 抑制瑞士 3T3 成纤维细胞中由 LPA 诱导的长期 DNA 合成和细胞迁移。 Ki16425 减少 LPA 诱导的 p42/p44 丝裂原激活蛋白激酶 (MAPK) 的激活,同时充当 p42/p44 MAPK 本身的弱刺激剂,这是变形蛋白激动剂的典型特性。 Ki16425 还显着降低 NGF 诱导的 p42/p44 MAPK 刺激,并抑制 PC-12 细胞中 NGF 刺激的神经突生长。 Ki16425 显着抑制滑液诱导的 COX-2 蛋白的表达。 LPA 对 COX-2 表达的 IL-1 作用的增强也被 Ki16425 抑制。激酶测定:RH7777细胞在有或没有Ki16425的情况下孵育1分钟,并测量肌醇磷酸盐(肌醇二磷酸和肌醇三磷酸的总和)。将结果标准化为掺入细胞肌醇脂质中的总放射性的105dpm,并且将三氯乙酸(5%)不溶部分的放射性视为总放射性。细胞测定:在人乳腺癌和前列腺癌细胞中,Ki16425 抑制肝素结合 EGF 样生长因子 (HB-EGF) 的表达。
|
||
体内研究 (In Vivo) |
Ki-16425(30mg/kg,i.p.)是一种溶血磷脂酸1受体拮抗剂,在注射溶血磷脂酰前30分钟而非90分钟给药时,完全阻断了溶血磷脂酸酯诱导的神经性疼痛样行为,表明Ki-16425是一种短效抑制剂。Ki-16425对神经损伤引起的神经性疼痛的阻断作用在损伤后3小时达到最大,但在这个关键时期之后没有达到最大。损伤后3小时而非6小时给予Ki-16425也阻断了神经化学变化,包括背根神经节电压门控钙通道α2δ-1亚基表达的上调和脊髓背角P物质表达的减少。使用Ki-16425的所有这些结果表明,溶血磷脂酸1受体介导的信号传导是神经性疼痛发展的基础,在神经损伤后关键期的早期阶段起作用。[4]
在溶血磷脂酸注射前 30 分钟而不是 90 分钟给药时,Ki-16425(30 mg/kg,腹腔注射)完全阻断 LPA 诱导的神经性疼痛样行为,表明 Ki-16425 是一种短效抑制剂。 Ki-16425 还抑制神经损伤引起的背根神经节 Caα2δ-1 的上调和脊髓背角 SP 免疫反应性的降低。 |
||
酶活实验 |
将 RH7777 细胞与或不与 Ki16425 一起孵育 1 分钟后,测量肌醇磷酸盐(肌醇二磷酸盐和肌醇三磷酸盐的总和)。将三氯乙酸(5%)不溶部分的放射性考虑为总放射性,并将结果标准化为掺入细胞肌醇脂质中的总放射性的105dpm。
溶血磷脂酸(LPA)通过特定受体产生多种生物反应:迄今为止,已经鉴定出EDG家族受体的三种亚型,LPA1、LPA2和LPA3(以前分别称为EDG-2、EDG-4和EDG-7),以及LPA4/GPR23,其结构与EDG家族的受体不同。在本研究中,我们表征了3-(4-[4-([1-(2-氯苯基)乙氧基]羰基氨基)-3-甲基-5-异恶唑基]苄基硫烷基)丙酸(Ki16425)对EDG家族LPA受体的作用机制Ki16425抑制了LPA的几种特异性反应,具体取决于细胞类型,对其他相关脂质受体激动剂(包括1-磷酸鞘氨醇)的反应没有明显影响。对于过表达LPA1、LPA2或LPA3的细胞,我们研究了Ki16425对LPA诱导作用的选择性和抑制方式,并将其与最近鉴定的LPA受体拮抗剂焦磷酸二辛酯(DGPP 8:0)进行了比较Ki16425抑制LPA诱导的反应,其顺序为LPA1>/=LPA3>>LPA2,而DGPP 8:0优先抑制LPA3诱导的作用Ki16425抑制LPA诱导的鸟苷5'-O-(3-硫代)三磷酸结合以及LPA受体与膜组分的结合,具有与完整细胞相同的药理学特异性。Ki16425和DGPP 8:0的抑制谱差异被用于评估A431细胞中参与LPA反应的受体亚型。最后,Ki16425还抑制了LPA诱导的长期反应,包括DNA合成和细胞迁移。总之,Ki16425选择性抑制LPA受体介导的作用,尤其是通过LPA1和LPA3;因此,它可能有助于评估LPA及其受体亚型在生物作用中的作用[1]。 |
||
细胞实验 |
Ki16425 抑制人乳腺癌和前列腺癌细胞中肝素结合 EGF 样生长因子 (HB-EGF) 的表达。
研究人员在这里报告了组成型活性溶血磷脂酸受体-1(LPA(1))受体在为Trk a受体提供βγ亚基方面的新作用。这增强了神经生长因子(NGF)促进信号传导和细胞反应的能力。这些结论基于三条证据。首先,LPA(1)受体与裂解物中的Trk A受体共免疫沉淀,表明这些蛋白质形成复合物。其次,LPA(1)受体的选择性蛋白激动剂Ki16425降低了组成型基础和LPA诱导的LPA(2)受体刺激的GTPγS结合Ki16425降低了LPA诱导的p42/p44丝裂原活化蛋白激酶(MAPK)的激活,同时自身作为p42/p44-MAPK的弱刺激因子,这是蛋白激动剂的典型特性。值得注意的是,Ki16425还降低了NGF诱导的p42/p44 MAPK的刺激,并抑制了NGF刺激的神经突起生长。第三,隔离β-γ亚基的C端GRK-2肽的过表达降低了NGF诱导的p42/p44 MAPK的激活。相比之下,LPA刺激PC12细胞会导致p42/p44 MAPK的主要G(i)α2介导的Trk a非依赖性激活,其中γ亚基的作用减弱。这些发现表明,组成型活性LPA(1)受体在调节NGF诱导的神经元分化中起着新的作用[2]。 |
||
动物实验 |
|
||
参考文献 | |||
其他信息 |
3-[({4-[4-({[1-(2-chlorophenyl)ethoxy]carbonyl}amino)-3-methyl-1,2-oxazol-5-yl]phenyl}methyl)sulfanyl]propanoic acid is a member of the class of isoxazoles that is the carbamate ester obtained by formal condensation of the carboxy group of 1-(2-chlorophenyl)ethyl hydrogen carbonate with the amino group of 3-({[4-(4-amino-3-methyl-1,2-oxazol-5-yl)phenyl]methyl}sulfanyl)propanoic acid. It is a member of isoxazoles, a carbamate ester, a member of monochlorobenzenes, an organic sulfide and a monocarboxylic acid.
While inflammatory cytokines are well-recognized critical factors for the induction of cyclooxygenase-2 (COX-2) in activated fibroblast-like synovial cells, the roles of biologically active components other than inflammatory cytokines in synovial fluid remain unknown. Herein, we assessed the role of lysophosphatidic acid (LPA), a pleiotropic lipid mediator, in COX-2 induction using synovial fluid of patients with rheumatoid arthritis (RA) in fibroblast-like RA synovial cells. Synovial fluid from RA patients stimulated COX-2 induction, which was associated with prostaglandin E(2) production, in RA synovial cells. The synovial fluid-induced actions were inhibited by G(i/o) protein inhibitor pertussis toxin and LPA receptor antagonist 3-(4-[4-([1-(2-chlorophenyl)ethoxy]carbonyl amino)-3-methyl-5-isoxazolyl] benzylsulfanyl) propanoic acid (Ki16425). In fact, LPA alone significantly induced COX-2 expression and enhanced IL-1alpha- or IL-1beta-induced enzyme expression in a manner sensitive to pertussis toxin and Ki16425. RA synovial cells abundantly expressed LPA(1) receptor compared with other LPA receptor subtypes. Moreover, synovial fluid contains a significant amount of LPA, an LPA-synthesizing enzyme autotaxin, and its substrate lysophosphatidylcholine. In conclusion, LPA existing in synovial fluid plays a critical role in COX-2 induction in collaboration with inflammatory cytokines in RA synovial cells. Ki16425-sensitive LPA receptors may be therapeutic targets for RA.[3] Lysophosphatidic acid is a bioactive lipid mediator with neuronal activities. We previously reported a crucial role for lysophosphatidic acid 1 receptor-mediated signaling in neuropathic pain mechanisms. Intrathecal administration of lysophosphatidic acid (1 nmol) induced abnormal pain behaviors, such as thermal hyperalgesia, mechanical allodynia, A-fiber hypersensitization, and C-fiber hyposensitization, all of which were also observed in partial sciatic nerve injury-induced neuropathic pain. Ki-16425 (30 mg/kg, i.p.), a lysophosphatidic acid 1 receptor antagonist, completely blocked lysophosphatidic acid-induced neuropathic pain-like behaviors, when administered 30 min but not 90 min before lysophosphatidic acid injection, suggesting that Ki-16425 is a short-lived inhibitor. The blockade of nerve injury-induced neuropathic pain by Ki-16425 was maximum as late as 3 h after the injury but not after this critical period. The administration of Ki-16425 at 3 h but not at 6 h after injury also blocked neurochemical changes, including up-regulation of voltage-gated calcium channel alpha(2)delta-1 subunit expression in dorsal root ganglion and reduction of substance P expression in the spinal dorsal horn. All of these results using Ki-16425 suggest that lysophosphatidic acid 1 receptor-mediated signaling which underlies the development of neuropathic pain works at an early stage of the critical period after nerve injury.[4] |
分子式 |
C23H23CLN2O5S
|
|
---|---|---|
分子量 |
474.96
|
|
精确质量 |
474.101
|
|
元素分析 |
C, 58.16; H, 4.88; Cl, 7.46; N, 5.90; O, 16.84; S, 6.75
|
|
CAS号 |
355025-24-0
|
|
相关CAS号 |
|
|
PubChem CID |
10367662
|
|
外观&性状 |
White to off-white solid powder
|
|
密度 |
1.4±0.1 g/cm3
|
|
沸点 |
623.7±55.0 °C at 760 mmHg
|
|
熔点 |
59.5-60.5 °C
|
|
闪点 |
331.0±31.5 °C
|
|
蒸汽压 |
0.0±1.9 mmHg at 25°C
|
|
折射率 |
1.628
|
|
LogP |
4.63
|
|
tPSA |
126.96
|
|
氢键供体(HBD)数目 |
2
|
|
氢键受体(HBA)数目 |
7
|
|
可旋转键数目(RBC) |
10
|
|
重原子数目 |
32
|
|
分子复杂度/Complexity |
619
|
|
定义原子立体中心数目 |
0
|
|
SMILES |
ClC1=C([H])C([H])=C([H])C([H])=C1C([H])(C([H])([H])[H])OC(N([H])C1C(C([H])([H])[H])=NOC=1C1C([H])=C([H])C(C([H])([H])SC([H])([H])C([H])([H])C(=O)O[H])=C([H])C=1[H])=O
|
|
InChi Key |
LLIFMNUXGDHTRO-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C23H23ClN2O5S/c1-14-21(25-23(29)30-15(2)18-5-3-4-6-19(18)24)22(31-26-14)17-9-7-16(8-10-17)13-32-12-11-20(27)28/h3-10,15H,11-13H2,1-2H3,(H,25,29)(H,27,28)
|
|
化学名 |
3-[[4-[4-[1-(2-chlorophenyl)ethoxycarbonylamino]-3-methyl-1,2-oxazol-5-yl]phenyl]methylsulfanyl]propanoic acid
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.26 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (5.26 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (5.26 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 5% DMSO +95%Corn oil : 30 mg/mL 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1054 mL | 10.5272 mL | 21.0544 mL | |
5 mM | 0.4211 mL | 2.1054 mL | 4.2109 mL | |
10 mM | 0.2105 mL | 1.0527 mL | 2.1054 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
Inhibitory effect of antagonist (Ki16425) for LPA receptor on the LPA- and synovial fluid-induced COX-2 expression in RA synovial cells. J Immunol . 2008 Oct 1;181(7):5111-9. td> |