规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
BET ( IC50 = 10.4 nM)[1].
|
---|---|
体外研究 (In Vitro) |
(+)-JQ1 PA 是 JQ1 的衍生物,也是 BET 的抑制剂。 (+)-JQ1 PA 针对 BET 的 IC50 为 10.4 nM,而 JQ1 在 MV4;11 细胞中的 IC50 为 14.3 nM [1]。
|
体内研究 (In Vivo) |
(+)-JQ1 (50 mg/kg) 抑制 NMC 797 异种移植小鼠的肿瘤生长。 (+)-JQ1 (50 mg/kg) 导致 NMC 797 异种移植小鼠中 NUT 核斑点的消失,这与与核染色质的竞争性结合一致。 (+)-JQ1 (50 mg/kg) 在 NMC 797 异种移植物中诱导强(31 级)角蛋白表达。 (+)-JQ1 (50 mg/kg) 促进 NMC 异种移植小鼠模型的分化、肿瘤消退和延长生存期。与媒介物处理的动物相比,静脉注射 MM.1S-luc+ 细胞后,(+)-JQ1 (50 mg/kg) 导致原位异种移植的 SCID 米色小鼠的总生存期显着延长。 (+)-JQ1 (50 mg/kg ip) 导致带有 Raji 异种移植物的小鼠的存活率显着增加。
|
酶活实验 |
Enhancers with differential JQ1–PA occupancy[1]
使用BEDtools(32)计算ChIP-seq和click-seq读取的覆盖率,并根据区域大小和库大小进行归一化。用15 ggplot2绘制R(33)图。每个增强子的相对点击序列覆盖率与BRD4 ChIP-seq覆盖率是通过JQ1-PA标准化读取与BRD4标准化读取的LFC计算的。所得LFC用于将增强剂分为5个大小相等、JQ1-PA占用率不同的组。 |
细胞实验 |
RNA测序[1]
将MV4;11细胞与JQ1或JQ1-PA (0.5μM)一起培养6小时。如前所述提取RNA。通过Tophat2和Bowtie2将读取与人类基因组(G1k V37)进行比对,并将读取分配给具有htseq计数的基因。微分表达式是用R统计编程语言中的edgeR计算的。假发现率(用Benjamini和Hochberg的方法进行多次检测校正)低于0.05且log2倍变化(LFC)大于1的基因被认为存在显著差异表达。在R中用ggplot2绘制RNA-seq数据的相关图和热图。 体外点击化学荧光。[1] (Cu(I)依赖性)MV4;11细胞用JQ1-PA 处理,50nM-5μM(显微镜下为3μM)或载体;5μM JQ1在培养基中培养3小时,用4%PFA(EMS)固定10分钟,渗透(0.1%Triton-X)并加入Cu+依赖的Click Master Mix中;(488 Alexa氟叠氮化物5μM,E301 5mM和4mM CuSO4)。然后将细胞在16-PBST缓冲液中洗涤3次,并将其安装在聚-L-赖氨酸涂层的载玻片上和/或通过流式细胞术进行评估。根据上述方案,还对显微镜成像的细胞进行BRD4探测,并在Leica TCS SP5共聚焦显微镜上用63×油物镜成像。 |
动物实验 |
In vivo formulations used (reported):
1. Dissolved in 5% dextrose; 50 mg/kg; i.p. injection; Nature. 2010 Dec 23;468(7327):1067-73 2. Dissolved in 10% DMSO and 90% of a 10% 2-hydroxypropyl-β-cyclodextrin solution; Leukemia. 2017 Oct;31(10):2037-2047 3. Dissolved in 1% DMSO+5% Glucose+ddH2O; Cell. 2018 Sep 20;175(1):186-199.e19 4. Dissolved in 20% hydroxypropyl-β-cyclodextrin, 5% DMSO, 0.2% Tween-80 in saline; Mol Cancer Ther. 2016 Jun;15(6):1217-26 5. Dissolved in 1:1 propylene glycol:water; J Biol Chem. 2016 Nov 4;291(45):23756-23768 6. Dissolved in 5% DMSO in 10% 2-hydroxypropyl-β-cyclodextrin solution; Cancer Lett. 2017 Aug 28;402:100-109 |
参考文献 | |
其他信息 |
The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.[1]
|
分子式 |
C22H20CLN5OS
|
|
---|---|---|
分子量 |
437.945101737976
|
|
精确质量 |
437.11
|
|
元素分析 |
C, 60.34; H, 4.60; Cl, 8.09; N, 15.99; O, 3.65; S, 7.32
|
|
CAS号 |
2115701-93-2
|
|
相关CAS号 |
|
|
PubChem CID |
134821687
|
|
外观&性状 |
Typically exists as Light yellow to yellow solids
|
|
LogP |
3.4
|
|
tPSA |
100Ų
|
|
氢键供体(HBD)数目 |
1
|
|
氢键受体(HBA)数目 |
5
|
|
可旋转键数目(RBC) |
4
|
|
重原子数目 |
30
|
|
分子复杂度/Complexity |
730
|
|
定义原子立体中心数目 |
1
|
|
SMILES |
CC1=C(SC2=C1C(=N[C@H](C3=NN=C(N32)C)CC(=O)NCC#C)C4=CC=C(C=C4)Cl)C
|
|
InChi Key |
ZLSCJWMPQYKVKU-KRWDZBQOSA-N
|
|
InChi Code |
InChI=1S/C22H20ClN5OS/c1-5-10-24-18(29)11-17-21-27-26-14(4)28(21)22-19(12(2)13(3)30-22)20(25-17)15-6-8-16(23)9-7-15/h1,6-9,17H,10-11H2,2-4H3,(H,24,29)/t17-/m0/s1
|
|
化学名 |
2-[(9S)-7-(4-chlorophenyl)-4,5,13-trimethyl-3-thia-1,8,11,12-tetrazatricyclo[8.3.0.02,6]trideca-2(6),4,7,10,12-pentaen-9-yl]-N-prop-2-ynylacetamide
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2834 mL | 11.4168 mL | 22.8337 mL | |
5 mM | 0.4567 mL | 2.2834 mL | 4.5667 mL | |
10 mM | 0.2283 mL | 1.1417 mL | 2.2834 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
![]() Clickable compounds phenocopy the parental compounds.Science.2017 Jun 30;356(6345):1397-1401. th> |
---|
![]() |
![]() Clickable compounds can be visualized and quantified in vitro. Preclinical assessment of clickable compounds in vivo.Science.2017 Jun 30;356(6345):1397-1401. td> |
![]() Leukemia and lymphoma cell lines are broadly sensitive to BET-bromodomain inhibition.Proc Natl Acad Sci U S A.2011 Oct 4;108(40):16669-74. th> |
---|
![]() Gene expression profiling of LP-1 and Raji cells treated with active or inactive BET inhibitors.Proc Natl Acad Sci U S A.2011 Oct 4;108(40):16669-74. td> |
![]() Small molecule BET-bromodomain inhibition suppressesMYCtranscription.Proc Natl Acad Sci U S A.2011 Oct 4;108(40):16669-74. td> |
![]() MYC reconstitution significantly protects cells from BET-mediated effects.Proc Natl Acad Sci U S A.2011 Oct 4;108(40):16669-74. th> |
---|
![]() BET-bromodomain inhibition decreases tumor load in vivo.Proc Natl Acad Sci U S A.2011 Oct 4;108(40):16669-74. td> |
![]() Integrated genomic rationale for BET bromodomains as therapeutic targets in MM.Cell.2011 Sep 16;146(6):904-17. td> |
![]() Inhibition of Myc-dependent transcription by theJQ1BET bromodomain inhibitor.Cell.2011 Sep 16;146(6):904-17. th> |
---|
![]() BET inhibition suppressesMYCtranscription in MM.Cell.2011 Sep 16;146(6):904-17. td> |
![]() Regulation ofMYCtranscription by BET bromodomains.Cell.2011 Sep 16;146(6):904-17. td> |
![]() Anti-myeloma activity ofJQ1in vitro.Cell.2011 Sep 16;146(6):904-17. th> |
---|
![]() JQ1induces cell cycle arrest and cellular senescence in MM cells.Cell.2011 Sep 16;146(6):904-17. td> |
![]() Translational implications of BET bromodomain inhibition in MM.Cell.2011 Sep 16;146(6):904-17. td> |