Irbesartan (SR-47436; BMS-186295)

别名: BMS-186295, SR-47436;BMS 186295, SR 47436; BMS186295, SR47436; Avapro, Aprovel, Karvea 依贝沙坦; 厄贝沙坦; 2-丁基-3-[4-[2-(1H-四唑-5-基)苯基]苄基]-1,3-二氮杂螺-[4.4]壬-1-烯-4-酮; 2-丁基-3-[邻-1H-5-四唑基苯基]苄基]-1,3-二氮杂螺[4,4]壬-1-烯-4-酮; 伊贝沙坦; 2-丁基-3-[[2'-(1H-四唑-5-基)[1,1'-联苯]-4-基]甲基]-1,3-二氮杂螺[4.4]壬-1-烯-4-酮;Irbesartan 伊贝沙坦;厄贝沙坦 EP标准品;厄贝沙坦 USP标准品;厄贝沙坦 依贝沙坦;厄贝沙坦标准品;厄贝沙坦杂质; 依贝沙坦 厄贝沙坦;依贝沙坦 ;2-正丁基-3-[4-[2-(1H-四唑-5-基)苯基]苄基]-1,3-二氮杂螺-[4.4]壬-1-烯-4-酮;厄贝沙坦(又称伊贝沙坦);厄贝沙坦,抗高血压药物;厄贝沙坦-13C,D4;抗高血压药物
目录号: V1776 纯度: ≥98%
厄贝沙坦(以前称为 SR47436;BMS186295;SR-47436;BMS-186295;Avapro、Aprovel、Karvea)是一种高效、特异性血管紧张素 II 1 型 (AT II-1) 受体拮抗剂/ARB,已批准作为抗高血压药物。
Irbesartan (SR-47436; BMS-186295) CAS号: 138402-11-6
产品类别: RAAS
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
5mg
10mg
50mg
100mg
250mg
500mg
1g
2g
Other Sizes

Other Forms of Irbesartan (SR-47436; BMS-186295):

  • 厄贝沙坦-D4
  • 厄贝沙坦盐酸盐
  • Irbesartan-d6-1 (厄贝沙坦-d6-1;依贝沙坦-d6-1)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
厄贝沙坦(以前称为 SR47436;BMS186295;SR-47436;BMS-186295;Avapro、Aprovel、Karvea)是一种高效、特异性血管紧张素 II 1 型 (AT II-1) 受体拮抗剂/ARB,被批准为抗高血压药物。它抑制 AT II-1,IC50 为 1.3 nM。厄贝沙坦主要用于治疗高血压。它通过选择性地、竞争性地阻断血管紧张素 II 与血管紧张素 I 受体的结合来发挥作用。血管紧张素II刺激肾上腺皮质合成和分泌醛固酮,从而减少钠的排泄,增加钾的排泄。血管紧张素 II 还可以作为血管平滑肌的血管收缩剂。
生物活性&实验参考方法
靶点
Ang II type 1 (AT1) receptor
体外研究 (In Vitro)
在体外,厄贝沙坦(20 μM,3 小时)可降低 Th22 细胞趋化性[1]。在体外,厄贝沙坦(0 μM、20 μM、40 μM 和 60 μM)抑制 Th22 细胞的发育[1]。在体外,厄贝沙坦 (20 μM) 可抑制 TEC 与 Th22 细胞相关的促炎反应[1]。
体内研究 (In Vivo)
在注入 Ang II 的大鼠中,厄贝沙坦(口服强饲法;50 mg/kg/d;每日一次)可降低血清 IL-22 水平和 Th22 淋巴细胞增多[1]。厄贝沙坦(口服管饲;50 mg/kg/d;每日一次)的肾脏保护作用是显而易见的[1]。在高血压诱发的大鼠中,厄贝沙坦(口服灌胃;50 mg/kg/d;每日一次)可减少肾脏纤维化和全身炎症[1]。在高血压肾损伤小鼠中,盐酸厄贝沙坦 (20 μM) 持续三小时可以减少 Th22 细胞募集和 IL-22 释放,可能是通过阻断趋化性[1]。
酶活实验
ARBs-厄贝沙坦和替米沙坦(10微mol/L)有效增强PPARγ依赖性3T3-L1脂肪细胞分化,并通过定量实时聚合酶链反应测量,与脂肪生成标记基因脂肪蛋白2(aP2)的mRNA表达显著增加相关(厄贝沙坦:3.3+/-0.1倍诱导;替米沙坦:3.1+/-0.3倍诱导;均P<0.01)。与其他ARB相比,替米沙坦在较低的药理学相关浓度下表现出更显著的aP2表达诱导作用。ARB氯沙坦仅在高浓度下增强aP2的表达(氯沙坦100微mol/L:3.6+/-0.3倍诱导;P<0.01),而高达100微mol/L的依普罗沙坦没有显著作用。在转录报告基因测定中,与PPARγ配体吡格列酮(10微mol/L)的5.2+/-1.1倍刺激相比,厄贝沙坦和替米沙坦(10微/L)分别显著诱导了3.4+/-0.9倍和2.6+/-0.6倍的PPARγ转录活性(P<0.05)。厄贝沙坦和替米沙坦也在AT1R缺陷细胞模型(PC12W)中诱导PPARγ活性,表明这些ARB刺激PPARγ的活性独立于其AT(1)R阻断作用[1]。
细胞实验
细胞活力测定[1]
细胞类型: CD4+ T 细胞
测试浓度: 0、20、40 和 60 μM
孵育持续时间:48小时
实验结果:对CD4+T细胞的活力没有明显影响。
动物实验
Animal/Disease Models: C57BL/6 mice[1]
Doses: 50 mg/kg
Route of Administration: po (oral gavage); 50 mg/kg /d; one time/day
Experimental Results: Displayed low Th22 cells and IL-22, exerted similar inhibitory effect on Th1 cell proportion and displayed diminished IL-22 level in kidney. Prevented BP elevation markedly and diminished urinary albumin/creatinine ratio, BUN and Scr. Repressed the expression of IL-1β, IL-6, TNF-α, α-SMA, FN and Col I and diminished the extent of fibrosis.

Animal/Disease Models: C57BL/6 mice[1]
Doses: 20 μM
Route of Administration: 20 μM; for 3 h
Experimental Results: Downregulated renal CCL20, CCL22 and CCL27 concentrations.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Irbesartan is 60-80% bioavailable with a Tmax of 1.5-2hours. Taking irbesartan with food does not affect the bioavailability. In one study, healthy subjects were given single or multiple oral doses of 150mg, 300mg, 600mg, and 900mg of irbesartan. A single 150mg dose resulted in an AUC of 9.7±3.0µg\•hr/mL, a Tmax of 1.5 hours, a half life of 16±7 hours, and a Cmax of 1.9±0.4µg/mL. A single 300mg dose resulted in an AUC of 20.0±5.2µg\•hr/mL, a Tmax of 1.5 hours, a half life of 14±7 hours, and a Cmax of 2.9±0.9µg/mL. A single 600mg dose resulted in an AUC of 32.6±11.9µg\•hr/mL, a Tmax of 1.5 hours, a half life of 14±8 hours, and a Cmax of 4.9±1.2µg/mL. A single 900mg dose resulted in an AUC of 44.8±20.0µg\•hr/mL, a Tmax of 1.5 hours, a half life of 17±7 hours, and a Cmax of 5.3±1.9µg/mL. Multiple 150mg doses resulted in an AUC of 9.3±3.0µg\•hr/mL, a Tmax of 1.5 hours, a half life of 11±4 hours, and a Cmax of 2.04±0.4µg/mL. Multiple 300mg doses resulted in an AUC of 19.8±5.8µg\•hr/mL, a Tmax of 2.0 hours, a half life of 11±5 hours, and a Cmax of 3.3±0.8µg/mL. Multiple 600mg doses resulted in an AUC of 31.9±9.7µg\•hr/mL, a Tmax of 1.5 hours, a half life of 15±7 hours, and a Cmax of 4.4±0.7µg/mL. Multiple 900mg doses resulted in an AUC of 34.2±9.3µg\•hr/mL, a Tmax of 1.8 hours, a half life of 14±6 hours, and a Cmax of 5.6±2.1µg/mL.
20% of a radiolabelled oral dose of irbesartan is recovered in urine, and the rest is recovered in the feces. <2% of the dose is recovered in urine as the unchanged drug.
The volume of distribution of irbesartan is 53-93L.
Total plasma clearance of irbesartan is 157-176mL/min while renal clearance is 3.0-3.5mL/min.
Irbesartan is an orally active agent that does not require biotransformation into an active form. The oral absorption of irbesartan is rapid and complete with an average absolute bioavailability of 60% to 80%. Following oral administration of Avapro, peak plasma concentrations of irbesartan are attained at 1.5 to 2 hours after dosing. Food does not affect the bioavailability of Avapro. Irbesartan exhibits linear pharmacokinetics over the therapeutic dose range. The terminal elimination half-life of irbesartan averaged 11 to 15 hours. Steady-state concentrations are achieved within 3 days. Limited accumulation of irbesartan (<20%) is observed in plasma upon repeated once-daily dosing.
Studies in animals indicate that radiolabeled irbesartan weakly crosses the blood-brain barrier and placenta.
Irbesartan is 90% bound to serum proteins (primarily albumin and a1-acid glycoprotein) with negligible binding to cellular components of blood. The average volume of distribution is 53 liters to 93 liters. Total plasma and renal clearances are in the range of 157 mL/min to 176 mL/min and 3.0 mL/min to 3.5 mL/min, respectively. With repetitive dosing, irbesartan accumulates to no clinically relevant extent.
It is not known whether irbesartan is excreted in human milk, but irbesartan or some metabolite of irbesartan is secreted at low concentration in the milk of lactating rats.
Metabolism / Metabolites
Irbesaran is largely metabolized by glucuronidation and oxidation in the liver. The majority of metabolism occurs through the action of CYP2C9 with a negligible contribution from CYP3A4. Some hydroxylation also occurs in irbesartan metabolism. Irbesartan can be glucuronidated by UGT1A3 to the M8 metabolite, oxidized to the M3 metabolite, or hydroxylated by CYP2C9 to one of the M4, M5, or M7 metabolites. The M4, M5, and M7 metabolites are all hydroxylated to become the M1 metabolite, which is then oxidized to the M2 metabolite. The M4 metabolite can also be oxidized to the M6 metabolite before hydroxylation to the M2 metabolite. Finally, the minor metabolite SR 49498 is generated from irbesartan by an unknown mechanism.
Irbesartan is metabolized via glucuronide conjugation and oxidation. Following oral or intravenous administration of (14)C-labeled irbesartan, more than 80% of the circulating plasma radioactivity is attributable to unchanged irbesartan. The primary circulating metabolite is the inactive irbesartan glucuronide conjugate (approximately 6%). The remaining oxidative metabolites do not add appreciably to irbesartan's pharmacologic activity. Irbesartan and its metabolites are excreted by both biliary and renal routes. Following either oral or intravenous administration of (14)C-labeled irbesartan, about 20% of radioactivity is recovered in the urine and the remainder in the feces, as irbesartan or irbesartan glucuronide. In vitro studies of irbesartan oxidation by cytochrome P450 isoenzymes indicated irbesartan was oxidized primarily by 2C9; metabolism by 3A4 was negligible. Irbesartan was neither metabolized by, nor did it substantially induce or inhibit, isoenzymes commonly associated with drug metabolism (1A1, 1A2, 2A6, 2B6, 2D6, 2E1). There was no induction or inhibition of 3A4.
Irbesartan has known human metabolites that include M7, (1S,4S,5S,6R)-3-[5-[2-[4-[(2-butyl-4-oxo-1,3-diazaspiro[4.4]non-1-en-3-yl)methyl]phenyl]phenyl]-5H-tetrazol-2-ium-2-yl]-2,4,5,6-tetrahydroxycyclohexane-1-carboxylic acid, M3, and 2-(3-hydroxybutyl)-3-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1,3-diazaspiro[4.4]non-1-en-4-one.
Biological Half-Life
The terminal elimination half life of irbesartan is 11-15 hours.
The terminal elimination half-life of irbesartan averaged 11 to 15 hours.
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
IDENTIFICATION AND USE: Irbesartan crystals are formulated into oral tablets. Irbesartan is an angiotensin II type 1 (AT1) receptor antagonist. It is used alone or in combination with other classes of antihypertensive drugs in the management of hypertension. It is also used for the treatment of diabetic nephropathy in patients with type 2 diabetes and hypertension. HUMAN EXPOSURE AND TOXICITY: The most likely manifestations of irbesartan overdose include hypotension and tachycardia; bradycardia might also occur from overdose. The use of irbesartan in pregnancy is contraindicated. While use during the first trimester does not suggest a risk of major anomalies, use during the second and third trimester may cause teratogenicity and severe fetal and neonatal toxicity. Fetal toxic effects may include anuria, oligohydramnios, fetal hypocalvaria, intrauterine growth restriction, premature birth, and patent ductus arteriosus. Anuria-associated oligohydramnios may produce fetal limb contractures, craniofacial deformation, and pulmonary hypoplasia. Severe anuria and hypotension that are resistant to both pressor agents and volume expansion may occur in the newborn following in utero exposure to irbesartan. ANIMAL STUDIES: No evidence of carcinogenicity was observed when irbesartan was administered in rats or mice for up to 2 years. Also, the fertility or mating of male and female rats was unaffected by administration of irbesartan. When pregnant rats were treated with the drug from day 0 to day 20 of gestation, increased incidences of renal pelvic cavitation, hydroureter and/or absence of renal papilla were observed in fetuses at doses as low as 50 mg/kg/day. Subcutaneous edema was observed in fetuses at doses as low as 180 mg/kg/day. As these anomalies were not observed in rats in which drug exposure was limited to gestation days 6 to 15, they appear to reflect late gestational effects of the drug. In pregnant rabbits, oral doses of 30 mg irbesartan/kg/day were associated with maternal mortality and abortion. Surviving females receiving this dose had a slight increase in early resorptions and a corresponding decrease in live fetuses. Irbesartan was not mutagenic in a battery of in vitro tests (Ames microbial test, rat hepatocyte DNA repair test, V79 mammalian-cell forward gene-mutation assay). Irbesartan was also negative in several tests for induction of chromosomal aberrations (in vitro-human lymphocyte assay; in vivo-mouse micronucleus study).
Hepatotoxicity
Irbesartan has been associated with a low rate of serum aminotransferase elevations (
Likelihood score: C (Probable rare cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Because no information is available on the use of irbesartan during breastfeeding, an alternate drug may be preferred, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Irbesartan is 90% protein bound in plasma, mainly to albumin and α1-acid glycoprotein.
Interactions
Do not coadminister aliskiren with Avapro in patients with diabetes. Avoid use of aliskiren with AVAPRO in patients with renal impairment (GFR <60 mL/min).
Dual blockade of the renin-angiotensin system (RAS) with angiotensin-receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypotension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes in patients on Avapro and other agents that affect the RAS.
Concomitant use of potassium-sparing diuretics, potassium supplements, or salt substitutes containing potassium may lead to increases in serum potassium.
Possible decreased irbesartan metabolism when irbesartan is used concomitantly with tolbutamide.
For more Interactions (Complete) data for Irbesartan (6 total), please visit the HSDB record page.
参考文献
[1]. Schupp M, et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation. 2004 May 4;109(17):2054-7. Epub 2004 Apr 26.
[2]. Ruiz E, et al. Importance of intracellular angiotensin II in vascular smooth muscle cell apoptosis: inhibition by the angiotensin AT1 receptor antagonist irbesartan. Eur J Pharmacol. 2007 Jul 19;567(3):231-9. Epub 2007 Apr 6.
[3]. Yong Zhong, et al. Irbesartan may relieve renal injury by suppressing Th22 cells chemotaxis and infiltration in Ang II-induced hypertension. Int Immunopharmacol
其他信息
Therapeutic Uses
Angiotensin II Type 1 Receptor Blockers; Antihypertensive Agents
Avapro (irbesartan) is indicated for the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents. /Included in US product label/
Avapro is indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria (>300 mg/day) in patients with type 2 diabetes and hypertension. In this population, Avapro reduces the rate of progression of nephropathy as measured by the occurrence of doubling of serum creatinine or end-stage renal disease (need for dialysis or renal transplantation). /Included in US product label/
Angiotensin II receptor antagonists /including irbesartan/ have been used in the management of congestive heart failure. /NOT included in US product label/
Drug Warnings
/BOXED WARNING/ WARNING: FETAL TOXICITY. When pregnancy is detected, discontinue Avapro as soon as possible. Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus.
Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue Avapro as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimesters of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus. In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue Avapro, unless it is considered lifesaving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury.
Neonates with a history of in utero exposure to Avapro: If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function.
FDA Pregnancy Risk Category: D /POSITIVE EVIDENCE OF RISK. Studies in humans, or investigational or post-marketing data, have demonstrated fetal risk. Nevertheless, potential benefits from the use of the drug may outweigh the potential risk. For example, the drug may be acceptable if needed in a life-threatening situation or serious disease for which safer drugs cannot be used or are ineffective./
For more Drug Warnings (Complete) data for Irbesartan (16 total), please visit the HSDB record page.
Pharmacodynamics
Irbesartan is an angiotensin receptor blocker used to treat hypertension and diabetic nephropathy. It has a long duration of action as it is usually taken once daily and a wide therapeutic index as doses may be as low as 150mg daily but doses of 900mg/day were well tolerated in healthy human subjects.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C25H28N6O
分子量
428.53
精确质量
428.232
元素分析
C, 70.07; H, 6.59; N, 19.61; O, 3.73
CAS号
138402-11-6
相关CAS号
Irbesartan-d4;1216883-23-6;Irbesartan hydrochloride;329055-23-4;Irbesartan-d6;Irbesartan-d6-1;2375621-21-7
PubChem CID
3749
外观&性状
White to off-white solid
密度
1.3±0.1 g/cm3
沸点
648.6±65.0 °C at 760 mmHg
熔点
180-181°C
闪点
346.0±34.3 °C
蒸汽压
0.0±1.9 mmHg at 25°C
折射率
1.690
LogP
4.51
tPSA
87.13
氢键供体(HBD)数目
1
氢键受体(HBA)数目
5
可旋转键数目(RBC)
7
重原子数目
32
分子复杂度/Complexity
682
定义原子立体中心数目
0
SMILES
O=C1C2(C([H])([H])C([H])([H])C([H])([H])C2([H])[H])N=C(C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])N1C([H])([H])C1C([H])=C([H])C(C2=C([H])C([H])=C([H])C([H])=C2C2N=NN([H])N=2)=C([H])C=1[H]
InChi Key
YOSHYTLCDANDAN-UHFFFAOYSA-N
InChi Code
InChI=1S/C25H28N6O/c1-2-3-10-22-26-25(15-6-7-16-25)24(32)31(22)17-18-11-13-19(14-12-18)20-8-4-5-9-21(20)23-27-29-30-28-23/h4-5,8-9,11-14H,2-3,6-7,10,15-17H2,1H3,(H,27,28,29,30)
化学名
2-butyl-3-[[4-[2-(2H-tetrazol-5-yl)phenyl]phenyl]methyl]-1,3-diazaspiro[4.4]non-1-en-4-one
别名
BMS-186295, SR-47436;BMS 186295, SR 47436; BMS186295, SR47436; Avapro, Aprovel, Karvea
HS Tariff Code
2934.99.03.00
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 4 mg/mL (9.3 mM)
Water:<1 mg/mL
Ethanol: 3 mg/mL (7.0 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.83 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (5.83 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (5.83 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液添加到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 30% PEG400+0.5% Tween80+5% Propylene glycol : 30 mg/mL

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.3336 mL 11.6678 mL 23.3356 mL
5 mM 0.4667 mL 2.3336 mL 4.6671 mL
10 mM 0.2334 mL 1.1668 mL 2.3336 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们