Ipatasertib HCl (GDC0068)

别名: GDC0068; GDC-0068; GDC 0068; RG7440; Ipatasertib HCl; 1489263-16-2; Ipatasertib hydrochloride; Ipatasertib monohydrochloride; M94BW9PF2L; Ipatasertib hydrochloride [JAN]; (2S)-2-(4-chlorophenyl)-1-[4-[(5R,7R)-7-hydroxy-5-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl]piperazin-1-yl]-3-(propan-2-ylamino)propan-1-one;hydrochloride; Ipatasertib hydrochloride (JAN); RG-7440; RG 7440
目录号: V22634 纯度: ≥98%
Ipatasertib Hydrochloride (GDC-0068) 是一种新型、强效、口服生物利用度、ATP 竞争性、高选择性泛 Akt 抑制剂,靶向 Akt1/2/3,在无细胞测定中 IC50 为 5 nM/18 nM/8 nM。其选择性是 PKA 的 620 倍。
Ipatasertib HCl (GDC0068) CAS号: 1489263-16-2
产品类别: New12
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Ipatasertib HCl (GDC0068):

  • 帕他色替
  • 帕他色替二盐酸盐
  • Ipatasertib tosylate
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
Ipatasertib salted (GDC-0068) 是一种新型、有效、口服生物可利用、ATP 竞争性、高选择性泛 Akt 抑制剂,靶向 Akt1/2/3,在无细胞测定中 IC50 为 5 nM/18 nM/8 nM ,它的选择性是 PKA 的 620 倍。 GDC-0068 用于治疗人类癌症。 PI3K-AKT 通路调节细胞生长、存活和肿瘤发生。 GDC-0068 结合并阻断 AKT 的激活,从而导致细胞周期停滞、抑制肿瘤细胞增殖并诱导肿瘤细胞死亡。 PI3K-AKT是肿瘤中频繁激活的通路,因此具有PTEN或PI3K突变导致AKT激活的肿瘤对GDC-0068高度敏感。
生物活性&实验参考方法
靶点
Akt1 (IC50 = 5 nM); Akt3 (IC50 = 8 nM); Akt2 (IC50 = 18 nM); PKA (IC50 = 3100 nM)
体外研究 (In Vitro)
与密切相关的 PKA 和 p70S6K 相比,imatasertib diHClide 对 Akt1 的选择性分别高出 600 倍和 100 倍以上,IC50 值更高。在 230 种蛋白质缀合物(包括人类 AGC 家族的 36 名成员)中,Ipatasertib diHClide 在 1 μM 浓度下仅抑制三种蛋白质缀合物(PRKG1α、PRKG1β 和 p70S6K)超过 70%。 ..对于这三个物种,定期测量的 IC50 值依次为 98、69 和 860 nM。因此,与第二个最有效的非 Akt 抑制剂(上面的 p70S6K Multiples 面板)相比,ipatasertib 二盐酸盐对筛选中的 Akt1 选择性高出 100 倍,但 PKG1 除外(其中 ipatasertib 二盐酸盐对 Akt1 的选择性高出 10 倍以上) 。使用展示药物治疗剂量依赖性反应的三种异种移植模型来研究二盐酸ipatasertib:MCF7-neo的药代动力学(PK)和药效学(PD)之间的关系。 /HER2、TOV-21G.x1 和 LNCaP Ipatasertib diHClide 在这三种细胞系中的平均细胞活力 IC50 分别为 2.56、0.44 和 0.11 μM [2]。
体内研究 (In Vivo)
在 Akt 由 PTEN 缺失、PIK3CA 突变或突变或 HER2 过度表达等遗传变化触发的移植模型中,二盐酸伊马替尼通常会成功。这些模型中的肿瘤在 100 mg/kg 或以下(在免疫功能低下的小鼠中观察到的最大耐受剂量)缓慢发育、生成或恢复。在体内检查中,每天将 RP-56976 与 Ipatasertib diHClide 组合可在 PC-3 和 MCF7-neo/HER2 异种移植小鼠中产生镇痛和肿瘤消退,但毒素本身要么无效,要么只是导致肿瘤发展。逐渐增加剂量。同样,当 Ipatasertib diHClide 和 NSC 241240 偶联时,在 OVCAR3 卵巢癌异种移植模型中观察到 TGI 升高。与额外化疗相比,Ipatasertib diHClide 联合 RP-56976 或 NSC 241240 单独治疗导致体重减轻不到 5% [2]。
酶活实验
Enzymatic Assays/酶实验[1]
用于测定Akt1/2/3和PKA激酶活性的测定采用IMAP荧光偏振(FP)磷酸化检测试剂来检测已被相应激酶磷酸化的荧光标记肽底物。这些研究中使用的Akt酶由重组杆状病毒表达、氨基末端、聚组氨酸标记、全长、野生型人类形式组成,并从商业上获得。这些研究中使用的PKA酶由商业上获得的大肠杆菌中表达的重组未标记的PKA人分离催化亚基组成。在环境温度下,将抑制剂、酶(9 nM Akt1或100 pM PKA)和底物(100 nM Crosstide)与5μM ATP在测定缓冲液(10 mM Tris-HCl(pH 7.2)、10 mM MgCl2、0.1%BSA(w/v)、最终DMSO 2%(v/v))中在5μL反应体积中孵育60分钟。通过向ATP溶液中加入酶+肽底物引发反应。加入IMAP结合试剂(15μL)终止反应,并将停止的反应在室温下孵育至少30分钟。
细胞实验
在以5000个细胞/孔的密度镀在黑色透明底96孔板上的LNCaP细胞中测量细胞存活率的抑制,随后在37°C和5%CO2下用0-10μM 28(ipatasertib)处理72小时。细胞增殖的程度是通过使用560nm的激发波长和590nm的发射波长测量制造商方案中所述的刃天青还原为再硫酸镁来确定的。使用四参数逻辑斯蒂模型生成剂量-反应曲线,并根据这些曲线拟合确定50%抑制浓度(IC50)值。[1]
简而言之,在ipatasertib处理后,HCT116 WT或p53-/-用1%甲醛固定,并在温SDS裂解缓冲液中裂解。获得基因组DNA,并通过在冰上超声处理将其剪切至200-1000bp。样品用蛋白A-琼脂糖/鲑鱼精子DNA(50%浆液)在4°C下搅拌预清洗1小时。然后加入抗FoxO3a抗体或抗p65抗体,在4°C的摇床上孵育过夜。正常兔IgG用作阴性对照。然后加入蛋白质琼脂糖/鲑鱼精子DNA(50%浆液)珠,以沉淀抗体/蛋白质/DNA复合物。用连续洗涤缓冲液洗涤后,用洗脱缓冲液(1%SDS,0.1 M NaHCO3)从珠粒中洗脱DNA-蛋白质免疫复合物30分钟。最后,通过在65°C下与0.2 M NaCl孵育4小时,逆转蛋白质-DNA交联以释放DNA[3]。
动物实验
Female nude mice bearing LNCaP, PC3, KPL-4, or MCF7 tumor xenografts
~100 mg/kg/day
Orally
For in vivo tumor xenograft studies, female nu/nu (nude) mice were inoculated subcutaneously in the right hind flank with PC3 cells suspended in Hank’s balanced salt solution (HBSS). When tumors reached a mean volume of 150 mm3, the animals were size matched and distributed into treatment groups consisting of 10 animals/group. Tumor volume was calculated as follows: tumor size (mm3) = (longer measurement × (shorter measurement)2) × 0.5. Following data analysis, p values were determined using Dunnett’s t test with JMP statistical software, version 7.0 (SAS Institute). Mouse body weights were recorded twice weekly using an Adventura Pro AV812 scale (Ohaus Corp.). Mice were promptly euthanized when the tumor volume exceeded 2000 mm3 or if body weight loss was ≥20% of the starting weight per IACUC protocol guidelines.[1]
For PK/PD studies, blood and tumor samples were collected at 1, 3, 8, and 24 h after a single dose of ipatasertib from PC3 tumor bearing mice. Blood samples (approximately 800 μL) were collected from each animal at the scheduled sample collection time by terminal cardiac puncture into tubes containing K2EDTA as an anticoagulant and centrifuged at 1500–2000g to isolate plasma. The concentration of ipatasertib in each plasma sample was determined by a nonvalidated LC/MS/MS assay in the DMPK Bioanalytical Department at Genentech. The assay lower limit of quantitation (LLOQ) was 0.005 μM. Tumor samples were dissociated in Tris lysis buffer containing 150 mM NaCl, 20 mM Tris (pH 7.5), 1 mM EDTA, 1 mM EGTA, and 1% Triton X-100. Protein concentrations were determined using the BCA Protein Assay Kit. The human enzyme-linked immunosorbent assay (ELISA) kits were used to determine the levels of total PRAS40 and PRAS40 phosphorylated at Thr246 (p-PRAS40). The assay quantifies protein levels on the basis of measurements of absorbance. The colored product is directly proportional to the concentration of p-PRAS40 and tPRAS40 present in the specimen. The Meso Scale Discovery Multi-Spot Biomarker Detection System was used to determine the levels of total S6RP and S6RP phosphorylated at Ser235/236 (pS6RP). These assays quantify protein levels on the basis of measurements of electrochemiluminescence intensity. Levels of phosphorylated protein were normalized to total protein levels in ipatasertib-treated tumors and compared to the vehicle control.[1]
In vivo efficacy was evaluated in multiple tumor cell line- and patient-derived xenograft models. Cells or tumor fragments were implanted subcutaneously into the flank of immunocompromised mice. Female or male nude (nu/nu) or severe combined immunodeficient mice (SCID)/beige mice were used. For the MCF7-neo/HER2 model, 17β-estradiol pellets (0.36 mg/pellet, 60-day release, no. SE-121) were implanted into the dorsal shoulder before cell inoculation. Male mice were castrated before implantation of tumor fragments. After implantation of tumor cells or fragments into mice, tumors were monitored until they reached mean tumor volumes of 180 to 350 mm3 and distributed into groups of 8 to 10 animals/group. ipatasertib/GDC-0068 was formulated in 0.5% methylcellulose/0.2% Tween-80 (MCT) and administered daily (QD), via oral (per os; PO) gavage.[2]
HCT116 WT and PUMA−/− were harvested, and 1 × 10~6 cells in 0.2 ml of medium were implanted subcutaneously into the back of athymic nude female mice. Female 5-week-old nude mice were housed in a sterile environment with microisolator cages and allowed access to water and chow ad libitum. Mice were treated daily with ipatasertib/GDC-0068 at 40 mg/kg by oral gavage for 21 days treatment after 7 days. Calipers were used to monitor the tumor growth, volume was calculated by the formula: 0.5 × length × width2. Mice were euthanized when tumors reached ~1.0 cm3 in size. Tumors were dissected and fixed in 10% formalin and embedded in paraffin.[3]
参考文献

[1]. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors. J Med Chem. 2012 Sep 27;55(18):8110-27.

[2]. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin Cancer Res. 2013 Apr 1;19(7):1760-72

[3]. Ipatasertib, a novel Akt inhibitor, induces transcription factor FoxO3a and NF-κB directly regulates PUMA-dependent apoptosis. Cell Death Dis. 2018 Sep 5;9(9):911.

其他信息
Colon cancer is one of the three common malignant tumors, with a lower survival rate. Ipatasertib, a novel highly selective ATP-competitive pan-Akt inhibitor, shows a strong antitumor effect in a variety of carcinoma, including colon cancer. However, there is a lack of knowledge about the precise underlying mechanism of clinical therapy for colon cancer. We conducted this study to determine that ipatasertib prevented colon cancer growth through PUMA-dependent apoptosis. Ipatasertib led to p53-independent PUMA activation by inhibiting Akt, thereby activating both FoxO3a and NF-κB synchronously that will directly bind to PUMA promoter, up-regulating PUMA transcription and Bax-mediated intrinsic mitochondrial apoptosis. Remarkably, Akt/FoxO3a/PUMA is the major pathway while Akt/NF-κB/PUMA is the secondary pathway of PUMA activation induced by ipatasertib in colon cancer. Knocking out PUMA eliminated ipatasertib-induced apoptosis both in vitro and in vivo (xenografts). Furthermore, PUMA is also indispensable in combinational therapies of ipatasertib with some conventional or novel drugs. Collectively, our study demonstrated that PUMA induction by FoxO3a and NF-κB is a critical step to suppress the growth of colon cancer under the therapy with ipatasertib, which provides some theoretical basis for clinical assessment.[3]
Purpose: We describe the preclinical pharmacology and antitumor activity of GDC-0068, a novel highly selective ATP-competitive pan-Akt inhibitor currently in clinical trials for the treatment of human cancers. Experimental design: The effect of GDC-0068 on Akt signaling was characterized using specific biomarkers of the Akt pathway, and response to GDC-0068 was evaluated in human cancer cell lines and xenograft models with various genetic backgrounds, either as a single agent or in combination with chemotherapeutic agents. Results: GDC-0068 blocked Akt signaling both in cultured human cancer cell lines and in tumor xenograft models as evidenced by dose-dependent decrease in phosphorylation of downstream targets. Inhibition of Akt activity by GDC-0068 resulted in blockade of cell-cycle progression and reduced viability of cancer cell lines. Markers of Akt activation, including high-basal phospho-Akt levels, PTEN loss, and PIK3CA kinase domain mutations, correlate with sensitivity to GDC-0068. Isogenic PTEN knockout also sensitized MCF10A cells to GDC-0068. In multiple tumor xenograft models, oral administration of GDC-0068 resulted in antitumor activity ranging from tumor growth delay to regression. Consistent with the role of Akt in a survival pathway, GDC-0068 also enhanced antitumor activity of classic chemotherapeutic agents. Conclusions: GDC-0068 is a highly selective, orally bioavailable Akt kinase inhibitor that shows pharmacodynamic inhibition of Akt signaling and robust antitumor activity in human cancer cells in vitro and in vivo. Our preclinical data provide a strong mechanistic rationale to evaluate GDC-0068 in cancers with activated Akt signaling.[2]
The discovery and optimization of a series of 6,7-dihydro-5H-cyclopenta[d]pyrimidine compounds that are ATP-competitive, selective inhibitors of protein kinase B/Akt is reported. The initial design and optimization was guided by the use of X-ray structures of inhibitors in complex with Akt1 and the closely related protein kinase A. The resulting compounds demonstrate potent inhibition of all three Akt isoforms in biochemical assays and poor inhibition of other members of the cAMP-dependent protein kinase/protein kinase G/protein kinase C extended family and block the phosphorylation of multiple downstream targets of Akt in human cancer cell lines. Biological studies with one such compound, 28 (GDC-0068), demonstrate good oral exposure resulting in dose-dependent pharmacodynamic effects on downstream biomarkers and a robust antitumor response in xenograft models in which the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway is activated. 28 is currently being evaluated in human clinical trials for the treatment of cancer.[1]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C24H33CL2N5O2
分子量
494.45712351799
精确质量
493.201
CAS号
1489263-16-2
相关CAS号
1001264-89-6;1489263-16-2 (HCl);1396257-94-5 (2HCl);1491138-23-8 (besylate); 1491138-24-9;
PubChem CID
72188570
外观&性状
Typically exists as solid at room temperature
tPSA
81.6Ų
氢键供体(HBD)数目
3
氢键受体(HBA)数目
6
可旋转键数目(RBC)
6
重原子数目
33
分子复杂度/Complexity
622
定义原子立体中心数目
3
SMILES
C[C@@H]1C[C@H](C2=C1C(=NC=N2)N3CCN(CC3)C(=O)[C@H](CNC(C)C)C4=CC=C(C=C4)Cl)O.Cl
InChi Key
DGGYVQQEWGRNDH-GJYOXNSLSA-N
InChi Code
InChI=1S/C24H32ClN5O2.ClH/c1-15(2)26-13-19(17-4-6-18(25)7-5-17)24(32)30-10-8-29(9-11-30)23-21-16(3)12-20(31)22(21)27-14-28-23/h4-7,14-16,19-20,26,31H,8-13H2,1-3H31H/t16-,19-,20-/m1./s1
化学名
(S)-2-(4-chlorophenyl)-1-(4-((5R,7R)-7-hydroxy-5-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)piperazin-1-yl)-3-(isopropylamino)propan-1-one hydrochloride.
别名
GDC0068; GDC-0068; GDC 0068; RG7440; Ipatasertib HCl; 1489263-16-2; Ipatasertib hydrochloride; Ipatasertib monohydrochloride; M94BW9PF2L; Ipatasertib hydrochloride [JAN]; (2S)-2-(4-chlorophenyl)-1-[4-[(5R,7R)-7-hydroxy-5-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl]piperazin-1-yl]-3-(propan-2-ylamino)propan-1-one;hydrochloride; Ipatasertib hydrochloride (JAN); RG-7440; RG 7440
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.0224 mL 10.1120 mL 20.2241 mL
5 mM 0.4045 mL 2.0224 mL 4.0448 mL
10 mM 0.2022 mL 1.0112 mL 2.0224 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们