Ipatasertib dihydrochloride (GDC-0068)

别名: Ipatasertib dihydrochloride; Ipatasertib; GDC 0068; GDC-0068; GDC0068; RG7440; 1396257-94-5; GDC-0068 (dihydrochloride); UNII-M2JCB5A8EV; M2JCB5A8EV; Ipatasertib (dihydrochloride); (2S)-2-(4-Chlorophenyl)-1-[4-[(5R,7R)-7-hydroxy-5-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl]piperazin-1-yl]-3-(propan-2-ylamino)propan-1-one;dihydrochloride; RG 7440; RG-7440 (2S)-2-(4-氯苯基)-1-[4-[(5R,7R)-6,7-二氢-7-羟基-5-甲基-5H-环戊并嘧啶-4-基]-1-哌嗪基]-3-[(1-甲基乙基)氨基]-1-丙酮二盐酸盐; (2S)-2-(4-氯苯基)-1-[4-[(5R,7R)-6,7-二氢-7-羟基-5-甲基-5H-环戊烯并嘧啶-4-基]-1-哌嗪基]-3-[(1-甲基乙基)氨基]-1-丙酮二盐酸盐; GDC-0068 (dihydrochloride)
目录号: V33006 纯度: ≥98%
Ipatasertib diHClide(以前也称为 GDC-0068)是一种新型、有效、口服生物可利用、ATP 竞争性、高选择性泛 Akt 抑制剂,靶向 Akt1/2/3,无细胞中的 IC50 为 5 nM/18 nM/8 nM分析表明,它的选择性是 PKA 的 620 倍。
Ipatasertib dihydrochloride (GDC-0068) CAS号: 1396257-94-5
产品类别: Akt
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Ipatasertib dihydrochloride (GDC-0068):

  • 帕他色替
  • 帕他色替盐酸盐
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
Ipatasertib diHClide,又称GDC-0068,是一种全新的、高效的、口服生物可利用的、ATP竞争性的、选择性的泛Akt抑制剂,以Akt1/2/3为靶点。在无细胞测定中,其 IC50 为 5 nM、18 nM 或 8 nM,并且选择性比 PKA 高 620 倍。 GDC-0068 可以治疗人类癌症。 PI3K-AKT 通路控制肿瘤发生、细胞存活和生长。当 GDC-0068 结合并抑制 AKT 的激活时,细胞周期被阻滞,肿瘤细胞增殖被抑制,并诱导肿瘤细胞死亡。由于 PI3K-AKT 通路在肿瘤中频繁激活,因此 GDC-0068 对具有激活 AKT 的 PTEN 或 PI3K 突变的肿瘤具有高亲和力。
生物活性&实验参考方法
靶点
Akt1 (IC50 = 5 nM); Akt3 (IC50 = 8 nM); Akt2 (IC50 = 18 nM); PKA (IC50 = 3100 nM)
体外研究 (In Vitro)
与密切相关的 PKA 和 p70S6K 相比,imatasertib diHClide 对 Akt1 的选择性分别高出 600 倍和 100 倍以上,IC50 值更高。在 230 种蛋白质缀合物(包括人类 AGC 家族的 36 名成员)中,Ipatasertib diHClide 在 1 μM 浓度下仅抑制三种蛋白质缀合物(PRKG1α、PRKG1β 和 p70S6K)超过 70%。 ..对于这三个物种,定期测量的 IC50 值依次为 98、69 和 860 nM。因此,与第二个最有效的非 Akt 抑制剂(上面的 p70S6K Multiples 面板)相比,ipatasertib 二盐酸盐对筛选中的 Akt1 选择性高出 100 倍,但 PKG1 除外(其中 ipatasertib 二盐酸盐对 Akt1 的选择性高出 10 倍以上) 。使用展示药物治疗剂量依赖性反应的三种异种移植模型来研究二盐酸ipatasertib:MCF7-neo的药代动力学(PK)和药效学(PD)之间的关系。 /HER2、TOV-21G.x1 和 LNCaP Ipatasertib diHClide 在这三种细胞系中的平均细胞活力 IC50 分别为 2.56、0.44 和 0.11 μM [2]。
体内研究 (In Vivo)
在 Akt 由 PTEN 缺失、PIK3CA 突变或突变或 HER2 过度表达等遗传变化触发的移植模型中,二盐酸伊马替尼通常会成功。这些模型中的肿瘤在 100 mg/kg 或以下(在免疫功能低下的小鼠中观察到的最大耐受剂量)缓慢发育、生成或恢复。在体内检查中,每天将 RP-56976 与 Ipatasertib diHClide 组合可在 PC-3 和 MCF7-neo/HER2 异种移植小鼠中产生镇痛和肿瘤消退,但毒素本身要么无效,要么只是导致肿瘤发展。逐渐增加剂量。同样,当 Ipatasertib diHClide 和 NSC 241240 偶联时,在 OVCAR3 卵巢癌异种移植模型中观察到 TGI 升高。与额外化疗相比,Ipatasertib diHClide 联合 RP-56976 或 NSC 241240 单独治疗导致体重减轻不到 5% [2]。
酶活实验
Enzymatic Assays/酶实验[1]
用于测定Akt1/2/3和PKA激酶活性的测定采用IMAP荧光偏振(FP)磷酸化检测试剂来检测已被相应激酶磷酸化的荧光标记肽底物。这些研究中使用的Akt酶由重组杆状病毒表达、氨基末端、聚组氨酸标记、全长、野生型人类形式组成,并从商业上获得。这些研究中使用的PKA酶由商业上获得的大肠杆菌中表达的重组未标记的PKA人分离催化亚基组成。在环境温度下,将抑制剂、酶(9 nM Akt1或100 pM PKA)和底物(100 nM Crosstide)与5μM ATP在测定缓冲液(10 mM Tris-HCl(pH 7.2)、10 mM MgCl2、0.1%BSA(w/v)、最终DMSO 2%(v/v))中在5μL反应体积中孵育60分钟。通过向ATP溶液中加入酶+肽底物引发反应。加入IMAP结合试剂(15μL)终止反应,并将停止的反应在室温下孵育至少30分钟。
细胞实验
384 孔板每孔接种 2,000 个细胞,体积为 54 L,然后在 37°C、5% CO2 下孵育过夜(大约 16 小时)。为了产生所需的库存浓度,化合物(如 Ipatasertib)在 DMSO 中稀释,然后以每孔 6 L 的体积添加。每种处理均测试四次。孵育四天后,在 Wallac Multilabel Reader 上测量总发光,并使用 CellTiter-Glo 估计相对活力。 4 参数曲线分析 (XLfit) 用于计算产生 IC50 的药物浓度,并且基于至少三个实验的结果。列出了未达到 IC50 的细胞系的最高测试浓度 (10 M)[2]。
动物实验
Mice:Numerous patient-derived xenograft models and tumor cell line models are used to evaluate in vivo efficacy. Immunocompromised mice have cells or tumor fragments implanted subcutaneously into their flanks. Mice that are severely combined immunodeficient (SCID) or beige, or both, are used. Male mice are castrated prior to the implantation of tumor fragments, and the LuCaP35V patient-derived primary tumors are obtained. When tumor cells or fragments are implanted into mice, the tumors are watched until they reach mean tumor volumes of 180 to 350 mm3 and are then divided into groups of 8 to 10 animals each. Ipatasertib is administered every day (QD) via oral (per os; PO) gavage and is formulated in 0.5% methylcellulose/0.2% Tween-80 (MCT). Every week (QW), 2.5 or 7.5 mg/kg of RP-56976 is administered intravenously (IV) in a solution of 3% EtOH/97% saline. Saline-based NSC 241240 is administered intraperitoneally (IP) once a week at a dose of 50 mg/kg.
参考文献

[1]. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors. J Med Chem. 2012 Sep 27;55(18):8110-27.

[2]. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin Cancer Res. 2013 Apr 1;19(7):1760-72.

其他信息
(2S)-2-(4-chlorophenyl)-1-[4-[(5R,7R)-7-hydroxy-5-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl]-1-piperazinyl]-3-(propan-2-ylamino)-1-propanone is a N-arylpiperazine.
Ipatasertib has been used in trials studying the treatment of Cancer, Neoplasms, Solid Cancers, Breast Cancer, and Gastric Cancer, among others.

Ipatasertib is an orally bioavailable inhibitor of the serine/threonine protein kinase Akt (protein kinase B) with potential antineoplastic activity. Ipatasertib binds to and inhibits the activity of Akt in a non-ATP-competitive manner, which may result in the inhibition of the PI3K/Akt signaling pathway and tumor cell proliferation and the induction of tumor cell apoptosis. Activation of the PI3K/Akt signaling pathway is frequently associated with tumorigenesis and dysregulated PI3K/Akt signaling may contribute to tumor resistance to a variety of antineoplastic agents.
Drug Indication: Treatment of breast cancer , Treatment of prostate cancer.
The discovery and optimization of a series of 6,7-dihydro-5H-cyclopenta[d]pyrimidine compounds that are ATP-competitive, selective inhibitors of protein kinase B/Akt is reported. The initial design and optimization was guided by the use of X-ray structures of inhibitors in complex with Akt1 and the closely related protein kinase A. The resulting compounds demonstrate potent inhibition of all three Akt isoforms in biochemical assays and poor inhibition of other members of the cAMP-dependent protein kinase/protein kinase G/protein kinase C extended family and block the phosphorylation of multiple downstream targets of Akt in human cancer cell lines. Biological studies with one such compound, 28 (GDC-0068), demonstrate good oral exposure resulting in dose-dependent pharmacodynamic effects on downstream biomarkers and a robust antitumor response in xenograft models in which the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway is activated. 28 is currently being evaluated in human clinical trials for the treatment of cancer.[1]
Purpose: We describe the preclinical pharmacology and antitumor activity of GDC-0068, a novel highly selective ATP-competitive pan-Akt inhibitor currently in clinical trials for the treatment of human cancers. Experimental design: The effect of GDC-0068 on Akt signaling was characterized using specific biomarkers of the Akt pathway, and response to GDC-0068 was evaluated in human cancer cell lines and xenograft models with various genetic backgrounds, either as a single agent or in combination with chemotherapeutic agents. Results: GDC-0068 blocked Akt signaling both in cultured human cancer cell lines and in tumor xenograft models as evidenced by dose-dependent decrease in phosphorylation of downstream targets. Inhibition of Akt activity by GDC-0068 resulted in blockade of cell-cycle progression and reduced viability of cancer cell lines. Markers of Akt activation, including high-basal phospho-Akt levels, PTEN loss, and PIK3CA kinase domain mutations, correlate with sensitivity to GDC-0068. Isogenic PTEN knockout also sensitized MCF10A cells to GDC-0068. In multiple tumor xenograft models, oral administration of GDC-0068 resulted in antitumor activity ranging from tumor growth delay to regression. Consistent with the role of Akt in a survival pathway, GDC-0068 also enhanced antitumor activity of classic chemotherapeutic agents. Conclusions: GDC-0068 is a highly selective, orally bioavailable Akt kinase inhibitor that shows pharmacodynamic inhibition of Akt signaling and robust antitumor activity in human cancer cells in vitro and in vivo. Our preclinical data provide a strong mechanistic rationale to evaluate GDC-0068 in cancers with activated Akt signaling.[2]
Colon cancer is one of the three common malignant tumors, with a lower survival rate. Ipatasertib, a novel highly selective ATP-competitive pan-Akt inhibitor, shows a strong antitumor effect in a variety of carcinoma, including colon cancer. However, there is a lack of knowledge about the precise underlying mechanism of clinical therapy for colon cancer. We conducted this study to determine that ipatasertib prevented colon cancer growth through PUMA-dependent apoptosis. Ipatasertib led to p53-independent PUMA activation by inhibiting Akt, thereby activating both FoxO3a and NF-κB synchronously that will directly bind to PUMA promoter, up-regulating PUMA transcription and Bax-mediated intrinsic mitochondrial apoptosis. Remarkably, Akt/FoxO3a/PUMA is the major pathway while Akt/NF-κB/PUMA is the secondary pathway of PUMA activation induced by ipatasertib in colon cancer. Knocking out PUMA eliminated ipatasertib-induced apoptosis both in vitro and in vivo (xenografts). Furthermore, PUMA is also indispensable in combinational therapies of ipatasertib with some conventional or novel drugs. Collectively, our study demonstrated that PUMA induction by FoxO3a and NF-κB is a critical step to suppress the growth of colon cancer under the therapy with ipatasertib, which provides some theoretical basis for clinical assessment.[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C₂₄H₃₄CL₃N₅O₂
分子量
530.9181
精确质量
529.178
元素分析
C, 54.30; H, 6.46; Cl, 20.03; N, 13.19; O, 6.03
CAS号
1396257-94-5
相关CAS号
Ipatasertib;1001264-89-6; 1489263-16-2 (HCl); 1491138-24-9; 1396257-94-5 (2HCl); 1491138-23-8 (besylate)
PubChem CID
62707512
外观&性状
Light yellow to yellow solid powder
LogP
5.098
tPSA
81.59
氢键供体(HBD)数目
4
氢键受体(HBA)数目
6
可旋转键数目(RBC)
6
重原子数目
34
分子复杂度/Complexity
622
定义原子立体中心数目
3
SMILES
ClC1C([H])=C([H])C(=C([H])C=1[H])[C@@]([H])(C([H])([H])N([H])C([H])(C([H])([H])[H])C([H])([H])[H])C(N1C([H])([H])C([H])([H])N(C([H])([H])C1([H])[H])C1C2=C([C@@]([H])(C([H])([H])[C@@]2([H])C([H])([H])[H])O[H])N=C([H])N=1)=O.Cl[H].Cl[H]
InChi Key
SRKVNRNRVFDUTG-VISIQVHMSA-N
InChi Code
InChI=1S/C24H32ClN5O2.2ClH/c1-15(2)26-13-19(17-4-6-18(25)7-5-17)24(32)30-10-8-29(9-11-30)23-21-16(3)12-20(31)22(21)27-14-28-23/h4-7,14-16,19-20,26,31H,8-13H2,1-3H32*1H/t16-,19-,20-/m1../s1
化学名
(2S)-2-(4-Chlorophenyl)-1-[4-[(5R,7R)-7-hydroxy-5-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl]piperazin-1-yl]-3-(propan-2-ylamino)propan-1-onedihydrochloride
别名
Ipatasertib dihydrochloride; Ipatasertib; GDC 0068; GDC-0068; GDC0068; RG7440; 1396257-94-5; GDC-0068 (dihydrochloride); UNII-M2JCB5A8EV; M2JCB5A8EV; Ipatasertib (dihydrochloride); (2S)-2-(4-Chlorophenyl)-1-[4-[(5R,7R)-7-hydroxy-5-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl]piperazin-1-yl]-3-(propan-2-ylamino)propan-1-one;dihydrochloride; RG 7440; RG-7440
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~100 mg/mL (188.35 mM; Need ultrasonic)
H2O: ≥41 mg/mL (77.22 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 3.88 mg/mL (7.31 mM) (饱和度未知) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 3.88 mg/mL (7.31 mM) (饱和度未知) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (3.92 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清的DMSO储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。


配方 4 中的溶解度: ≥ 2.08 mg/mL (3.92 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100μL 20.8mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

配方 5 中的溶解度: ≥ 2.08 mg/mL (3.92 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL 澄清 DMSO 储备液加入900 μL 玉米油中,混合均匀。

配方 6 中的溶解度: 16.67 mg/mL (31.40 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.8835 mL 9.4176 mL 18.8352 mL
5 mM 0.3767 mL 1.8835 mL 3.7670 mL
10 mM 0.1884 mL 0.9418 mL 1.8835 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Targeted Therapy Directed by Genetic Testing in Treating Patients With Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)
CTID: NCT02465060
Phase: Phase 2
Status: Active, not recruiting
Date: 2024-08-16
Study of Chemotherapy Plus Ipatasertib for People With Solid Tumors With AKT Mutations, A ComboMATCH Treatment Trial
CTID: NCT05554380
Phase: Phase 2
Status: Recruiting
Date: 2024-08-15
Testing the Addition of Ipatasertib to the Usual Chemotherapy Treatment (Paclitaxel and Carboplatin) for Stage III or IV Epithelial Ovarian Cancer
CTID: NCT05276973
Phase: Phase 1
Status: Recruiting
Date: 2024-08-15
A Rollover Study for Participants Previously Enrolled in a Genentech and/or F. Hoffman-La Roche Sponsored Study
CTID: NCT05862285
Phase: Phase 3
Status: Recruiting
Date: 2024-08-12
A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Participants With Breast Cancer
CTID: NCT04802759
Phase: Phase 1/Phase 2
Status: Recruiting
Date: 2024-08-06
相关产品
联系我们