Ifosfamide

别名: NSC-109724; Isophosphamide; Ifomide; NSC 109724; NSC109724; Iphosphamid; iphosphamide; Isoendoxan; IsoEndoxan; isophosphamide; Naxamide; Trade names: Cyfos; Ifex; Ifosfamidum 异环磷酰胺; 异环磷酰胺(标准品); 3-(2-氯乙基)-2-[(2-氯乙基)氨基]四氢-2H-1,3,2-噁磷-2-氧化物; 3-(2-氯乙基)-2-[(2-氯乙基)氨基]四氢-2H-1,3,2-磷-2-氧化物; 异环磷酰;异环磷酰氨; 异环磷酰胺 EP标准品;异环磷酰胺 USP标准品;异环磷酰胺 标准品;异环磷酰胺-D4
目录号: V1445 纯度: ≥98%
Ifosfamide(以前称为 NSC-109724、Isophosphamide、Ifomide、Iphosphamid、iphosphamide、Isoendoxan、IsoEndoxan、Naxamide、Cyfos、Ifex、Ifosfamidum)是一种经批准的抗癌药物,可用作氮芥和 DNA 烷化剂/烷化剂。
Ifosfamide CAS号: 3778-73-2
产品类别: DNA(RNA) Synthesis
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
100mg
250mg
500mg
1g
2g
5g
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Ifosfamide(以前称为 NSC-109724、Isophosphamide、Ifomide、Iphosphamid、iphosphamide、Isoendoxan、IsoEndoxan、Naxamide、Cyfos、Ifex、Ifosfamidum)是一种经批准的抗癌药物,可用作氮芥和 DNA 烷化剂/烷化剂。它已用于治疗多种癌症,如小细胞肺癌、小儿实体瘤、非霍奇金和霍奇金淋巴瘤以及卵巢癌。异环磷酰胺是一种前药,必须在肝脏中通过细胞色素 P450 酶代谢为活性形式:异环磷酰胺芥末,可烷基化 DNA。
生物活性&实验参考方法
靶点
DNA Alkylator
体外研究 (In Vitro)
体外活性:Ifosfamide (50 mM) 增加肝细胞中 CYP3A4、CYP2C8 和 CYP2C9 蛋白水平,从而提高培养肝细胞中自身的 4-羟基化率。异环磷酰胺仅在一种人肝细胞培养物中诱导 CYP3A4,该培养物除了更广泛表达的 CYP3A4 之外还含有多态性表达的 CYP3A5。异环磷酰胺是一种前药,在肝脏中通过细胞色素 P450 混合功能氧化酶代谢为活性烷基化化合物异磷酰胺芥子。异环磷酰胺在小细胞肺癌、儿科实体瘤、非霍奇金和霍奇金淋巴瘤以及卵巢癌中产生了良好的缓解率。稳定转染 CYP2B1 后,异环磷酰胺对 MCF-7 细胞具有高度细胞毒性,但对亲代肿瘤细胞或表达 β-半乳糖苷酶的 MCF-7 转染子没有毒性,这种细胞毒性可以被 CYP2B1 抑制剂甲替拉酮明显阻断。小梁结构分析显示,异环磷酰胺与唑来膦酸联合使用比单独使用每种药物在预防肿瘤复发、改善组织修复和增加骨形成方面更有效。
体内研究 (In Vivo)
腹腔注射异环磷酰胺(100 mg/kg、200 mg/kg 和 400 mg/kg)可引起小鼠膀胱湿重和伊文思蓝外渗的剂量依赖性增加。异环磷酰胺显示小鼠广泛性膀胱炎,其特征是急性炎症,伴有血管充血、水肿、出血和纤维蛋白沉积、中性粒细胞浸润和上皮剥脱。异环磷酰胺对细胞质中的诱导型一氧化氮合酶表现出强烈的反应性,并且在苏木精和伊红染色中显示出强烈的弥漫性坏死。
细胞实验
使用含有 2 毫升的培养基将 4 × 104 细胞接种到 3 cm 培养皿中。当达到终浓度时,第二天添加 0 至 5 mM 异环磷酰胺。除去培养基并用 PBS 清洁细胞并进行计数或染色后,还需要六天的时间[2]。
动物实验
Rats: Female rats are separated into four groups of eight before mating: group 1 is an untreated negative control group; group 2 is an injection of 1 mL of 0.9% NaCl; group 3 is an injection of 25 mg/kg Ifosfamide; and group 4 is an injection of 50 mg/kg Ifosfamide. Following five days of daily injections of Ifosfamide, three females are kept in a cage with one untreated male for a maximum of one week. Every day, vaginal smears are checked to see if someone is pregnant. In the event that sperm are found, the first 24 hours after mating are considered the first day of pregnancy. The expectant mothers are kept apart and regularly checked for symptoms of toxicity and miscarriage. On the eighteenth day of gestation, all pregnant animals are sacrificed by being beheaded. Serum is decanted and kept at -70°C until it is needed for the hormone assay. Cardiac blood (2.5–3 mL/rat) is collected in nonheparinized test tubes, centrifuged at 3,000× g for 30 min. The uterus and both ovaries are removed after blood collection, cleaned in saline solution, and the corpora lutea of pregnancy are counted visually. Each uterine horn is then examined to determine the number of viable fetuses, implantation sites, and resorption sites. Crown rump (CR) length is measured, weight is recorded, and each fetus is extracted from its umbilical cord. The placental weights are noted and the fetuses are inspected for external malformation. In order to facilitate histological and immunohistochemical analysis, fetuses and placentas from the control and treated groups are fixed in 10% neutral broth formalin.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Ifosfamide is extensively metabolized in humans and the metabolic pathways appear to be saturated at high doses. After administration of doses of 5 g/m2 of 14C-labeled ifosfamide, from 70% to 86% of the dosed radioactivity was recovered in the urine, with about 61% of the dose excreted as parent compound. At doses of 1.6–2.4 g/m2 only 12% to 18% of the dose was excreted in the urine as unchanged drug within 72 hours.
Ifosfamide volume of distribution (Vd) approximates the total body water volume, suggesting that distribution takes place with minimal tissue binding. Following intravenous administration of 1.5 g/m2 over 0.5 hour once daily for 5 days to 15 patients with neoplastic disease, the median Vd of ifosfamide was 0.64 L/kg on Day 1 and 0.72 L/kg on Day 5. When given to pediatric patients, the volume of distribution was 21±1.6 L/m^2.
2.4±0.33 L/h/m^2 [pediatric patients]
Renal excretion & t1/2 are dose & schedule dependent. 60-80% recovered as unchanged drug or metabolite in urine within 72 hr after admin.
The distribution of ifosfamide (IF) and its metabolites 2-dechloroethylifosfamide (2DCE), 3-dechloroethylifosfamide (3DCE), 4-hydroxyifosfamide (4OHIF) and ifosforamide mustard (IFM) between plasma and erythrocytes was examined in vitro and in vivo. In vitro distribution was investigated by incubating blood with various concentrations of IF and its metabolites. In vivo distribution of IF, 2DCE, 3DCE and 4OHIF was determined in 7 patients receiving 9 g/m(2)/72 h intravenous continuous IF infusion. In vitro distribution equilibrium between erythrocytes and plasma was obtained quickly after drug addition. Mean (+/-sem) in vitro and in vivo erythrocyte (e)-plasma (p) partition coefficients (P(e/p)) were 0.75+/-0.01 and 0.81+/-0.03, 0.62+/-0.09 and 0.73+/-0.05, 0.76+/-0.10 and 0.93+/-0.05 and 1.38+/-0.04 and 0.98+/-0.09 for IF, 2DCE, 3DCE and 4OHIF, respectively. These ratios were independent of concentration and unaltered with time. The ratios of the area under the erythrocyte and plasma concentration--time curves (AUC(e/p)) were 0.96+/-0.03, 0.87+/-0.07, 0.98+/-0.06 and 1.34+/-0.39, respectively. A time- and concentration-dependent distribution--equilibrium phenomenon was observed with the relative hydrophilic IFM. It is concluded that IF and metabolites rapidly reach distribution equilibrium between erythrocytes and plasma; the process is slower for IFM. Drug distribution to the erythrocyte fraction ranged from about 38% for 2DCE to 58% for 4OHIF, and was stable over a wide range of clinically relevant concentrations. A strong parallelism in the erythrocyte and plasma concentration profiles was observed for all compounds. Thus, pharmacokinetic assessment using only plasma sampling yields direct and accurate insights into the whole blood kinetics of IF and metabolites and may be used for pharmacokinetic-pharmacodynamic studies.
... To assess the feasibility of a sparse sampling approach for the determination of the population pharmacokinetics of ifosfamide, 2- and 3-dechloroethyl-ifosfamide and 4-hydroxy-ifosfamide in children treated with single-agent ifosfamide against various malignant tumours. ... Pharmacokinetic assessment followed by model fitting. Patients: The analysis included 32 patients aged between 1 and 18 years receiving a total of 45 courses of ifosfamide 1.2, 2 or 3 g/m2 in 1 or 3 hours on 1, 2 or 3 days. ... A total of 133 blood samples (median of 3 per patient) were collected. Plasma concentrations of ifosfamide and its dechloroethylated metabolites were determined by gas chromatography. Plasma concentrations of 4-hydroxy-ifosfamide were measured by high-performance liquid chromatography. The models were fitted to the data using a nonlinear mixed effects model as implemented in the NONMEM program. A cross-validation was performed. ... Population values (mean +/- standard error) for the initial clearance and volume of distribution of ifosfamide were estimated at 2.36 +/- 0.33 L/h/m2 and 20.6 +/- 1.6 L/m2 with an interindividual variability of 43 and 32%, respectively. The enzyme induction constant was estimated at 0.0493 +/- 0.0104 L/h2/m2. The ratio of the fraction of ifosfamide metabolised to each metabolite to the volume of distribution of that metabolite, and the elimination rate constant, of 2- and 3-dechloroethyl-ifosfamide and 4-hydroxy-ifosfamide were 0.0976 +/- 0.0556, 0.0328 +/- 0.0102 and 0.0230 +/- 0.0083 m2/L and 3.64 +/- 2.04, 0.445 +/- 0.174 and 7.67 +/- 2.87 h(-1), respectively. Interindividual variability of the first parameter was 23, 34 and 53%, respectively. Cross-validation indicated no bias and minor imprecision (12.5 +/- 5.1%) for 4-hydroxy-ifosfamide only. ... We have developed and validated a model to estimate ifosfamide and metabolite concentrations in a paediatric population by using sparse sampling.
... The population pharmacokinetics and pharmacodynamics of the cytostatic agent ifosfamide and its main metabolites 2- and 3-dechloroethylifosfamide and 4-hydroxyifosfamide were assessed in patients with soft tissue sarcoma. ... Twenty patients received 9 or 12 g/m2 ifosfamide administered as a 72-h continuous intravenous infusion. The population pharmacokinetic model was built in a sequential manner, starting with a covariate-free model and progressing to a covariate model with the aid of generalised additive modelling. ... The addition of the covariates weight, body surface area, albumin, serum creatinine, serum urea, alkaline phosphatase and lactate dehydrogenase improved the prediction errors of the model. Typical pretreatment (mean +/- SEM) initial clearance of ifosfamide was 3.03 +/- 0.18 l/h with a volume of distribution of 44.0 +/- 1.8 l. Autoinduction, dependent on ifosfamide levels, was characterised by an induction half-life of 11.5 +/- 1.0 h with 50% maximum induction at 33.0 +/- 3.6 microM ifosfamide. Significant pharmacokinetic-pharmacodynamic relationships (P = 0.019) were observed between the exposure to 2- and 3-dechloroethylifosfamide and orientational disorder, a neurotoxic side-effect. No pharmacokinetic-pharmacodynamic relationships between exposure to 4-hydroxyifosfamide and haematological toxicities could be observed in this population.
For more Absorption, Distribution and Excretion (Complete) data for IFOSFAMIDE (6 total), please visit the HSDB record page.
Metabolism / Metabolites
Primarily hepatic. Ifosfamide is metabolized through two metabolic pathways: ring oxidation ("activation") to form the active metabolite, 4-hydroxy-ifosfamide and side-chain oxidation to form the inactive metabolites, 3-dechloro-ethylifosfamide or 2-dechloroethylifosfamide with liberation of the toxic metabolite, chloroacetaldehyde. Small quantities (nmol/mL) of ifosfamide mustard and 4-hydroxyifosfamide are detectable in human plasma. Metabolism of ifosfamide is required for the generation of the biologically active species and while metabolism is extensive, it is also quite variable among patients.
Like cyclophosphamide, ifosfamide is activated in the liver by hydroxylation. However, the activation of ifosfamide proceeds more slowly, with greater production of dechlorinated metabolites & chloroacetaldehyde. These differences in metabolism likely account for the higher doses of ifosfamide required for equitoxic effects & the possible difference in antitumor spectrum of the two agents.
Like cyclophosphamide, isophosphamide requires metabolism by microsomal enzymes to act as a cytotoxic agent. It is rapidly metabolized in many species, including rodents and dogs; the urinary metabolites indicate that a series of reactions take place analogous to those in the metabolism of cyclophosphamide. Acrolein is produced during its oxidative degradation, and one product of the reaction is the ring-opened carboxy derivative. Dogs also rapidly metabolize isophosphamide, and the carboxy derivative and 4-keto isophosphamide have been identified in the urine.
The aim of this study was to develop a population pharmacokinetic model that could describe the pharmacokinetics of ifosfamide. 2- and 3-dechloroethylifosfamide and 4-hydroxyifosfamide, and calculate their plasma exposure and urinary excretion. A group of 14 patients with small-cell lung cancer received a 1-h intravenous infusion of 2.0 or 3.0 g/m2 ifosfamide over 1 or 2 days in combination with 175 mg/m2 paclitaxel and carboplatin at AUC 6. The concentration-time profiles of ifosfamide were described by an ifosfamide concentration-dependent development of autoinduction of ifosfamide clearance. Metabolite compartments were linked to the ifosfamide compartment enabling description of the concentration-time profiles of 2- and 3-dechloroethylifosfamide and 4-hydroxyifosfamide. The Bayesian estimates of the pharmacokinetic parameters were used to calculate the systemic exposure to ifosfamide and its metabolites for the four ifosfamide schedules. Fractionation of the dose over 2 days resulted increased metabolite formation, especially of 2-dechloroethylifosfamide, probably due to increased autoinduction. Renal recovery was only minor with 6.6% of the administered dose excreted unchanged and 9.8% as dechloroethylated metabolites. In conclusion, ifosfamide pharmacokinetics were described with an ifosfamide concentration-dependent development of autoinduction and allowed estimation of the population pharmacokinetics of the metabolites of ifosfamide. Fractionation of the dose resulted in increased exposure to 2-dechloroethylifosfamide, probably due to increased autoinduction.
The anticancer drug ifosfamide is a prodrug requiring activation through 4-hydroxyifosfamide to ifosforamide mustard, to exert cytotoxicity. Deactivation of ifosfamide leads to 2- and 3-dechloroethylifosfamide and the release of potentially neurotoxic chloracetaldehyde. The aim of this study was to quantify and to compare the pharmacokinetics of ifosfamide, 2- and 3-dechloroethylifosfamide, 4-hydroxyifosfamide, and ifosforamide mustard in short (1-4 h), medium (24-72 h), and long infusion durations (96-240 h) of ifosfamide. An integrated population pharmacokinetic model was used to describe the autoinducible pharmacokinetics of ifosfamide and its four metabolites in 56 patients. The rate by which autoinduction of the metabolism of ifosfamide developed was found to be significantly dependent on the infusion schedule. The rate was 52% lower with long infusion durations compared with short infusion durations. This difference was, however, comparable with its interindividual variability (22%) and was, therefore, considered to be of minor clinical importance. Autoinduction caused a less than proportional increase in the area under the ifosfamide plasma concentration-time curve (AUC) and more than proportional increase in metabolite exposure with increasing ifosfamide dose. During long infusion durations dose-corrected exposures (AUC/D) were significantly decreased for ifosfamide and increased for 3-dechloroethylifosfamide compared with short infusion durations. No differences in dose-normalized exposure to ifosfamide and metabolites were observed between short and medium infusion durations. This study demonstrates that the duration of ifosfamide infusion influences the exposure to the parent and its metabolite 3-dechloroethylifosfamide. The observed dose and infusion duration dependence should be taken into account when modeling ifosfamide metabolism.
Ifosfamide is a known human metabolite of L-trofosfamide.
Primarily hepatic. Ifosfamide is metabolized through two metabolic pathways: ring oxidation ("activation") to form the active metabolite, 4-hydroxy-ifosfamide and side-chain oxidation to form the inactive metabolites, 3-dechloro-ethylifosfamide or 2-dechloroethylifosfamide with liberation of the toxic metabolite, chloroacetaldehyde. Small quantities (nmol/mL) of ifosfamide mustard and 4-hydroxyifosfamide are detectable in human plasma. Metabolism of ifosfamide is required for the generation of the biologically active species and while metabolism is extensive, it is also quite variable among patients.
Route of Elimination: Ifosfamide is extensively metabolized in humans and the metabolic pathways appear to be saturated at high doses. After administration of doses of 5 g/m2 of 14C-labeled ifosfamide, from 70% to 86% of the dosed radioactivity was recovered in the urine, with about 61% of the dose excreted as parent compound. At doses of 1.6 - 2.4 g/m2 only 12% to 18% of the dose was excreted in the urine as unchanged drug within 72 hours.
Half Life: 7-15 hours. The elimination half-life increase appeared to be related to the increase in ifosfamide volume of distribution with age.
Biological Half-Life
7-15 hours. The elimination half-life increase appeared to be related to the increase in ifosfamide volume of distribution with age.
The elimination half-life associated with doses of 2.5 g/sq m is 6-8 hr, whereas the elimination half-life associated with doses of 3.5-5 g/sq m is 14-16 hr.
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
After metabolic activation, active metabolites of ifosfamide alkylate or bind with many intracellular molecular structures, including nucleic acids. The cytotoxic action is primarily due to cross-linking of strands of DNA and RNA, as well as inhibition of protein synthesis.
Hepatotoxicity
The toxicity of ifosfamide seems to be similar to that of cyclophosphamide. Mild and transient elevations in serum aminotransferase levels are found in a high proportion of patients receiving ifosfamide. Because ifosfamide is typically given in combination with other antineoplastic agents, its role in causing the serum enzyme elevations is often not clear. The abnormalities are generally transient, do not cause symptoms and do not require dose modification. Clinically apparent liver injury from ifosfamide has been limited to a small number of cases of cholestatic hepatitis arising within a few weeks of receiving ifosfamide (with other antineoplastic agents). In addition, sinusoidal obstruction syndrome has been reported after conditioning regimens that have included ifosfamide in preparation for hematopoietic cell transplantation. The onset of injury is usually within one to three weeks of the myeloablation and is characterized by a sudden onset of abdominal pain, weight gain, ascites, marked increase in serum aminotransferase levels (and lactic dehydrogenase), and subsequent jaundice and hepatic dysfunction. The severity of sinusoidal obstruction syndrome varies from a transient, self limited injury to acute liver failure. The diagnosis is usually based on clinical features of tenderness and enlargement of the liver, weight gain, ascites and jaundice. Liver biopsy is diagnostic but often contraindicated, because of severe thrombocytopenia after bone marrow transplantation.
Likelihood score: D (possible rare cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Most sources consider breastfeeding to be contraindicated during maternal antineoplastic drug therapy, especially alkylating agents such as ifosfamide. Labeling suggests that mothers should not breastfeed during therapy and for 1 week after the last dose of ifosfamide or mesna. Chemotherapy may adversely affect the normal microbiome and chemical makeup of breastmilk. Women who receive chemotherapy during pregnancy are more likely to have difficulty nursing their infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Ifosfamide shows little plasma protein binding.
Toxicity Data
LD50 (mouse) = 390-1005 mg/kg, LD50 (rat) = 150-190 mg/kg.
Interactions
The more urotoxic agent ifosfamide was introduced to the market with the uroprotective agent, Mesna. Mesna liberated free thiol groups in the bladder which then can react with & neutralize the oxazaphosphorine metabolite. When administered in an appropriate dosing schedule, Mesna can prevent the bladder toxicity completely.
BACKGROUND: The autoinducible metabolic transformation of the anticancer agent ifosfamide involves activation through 4-hydroxyifosfamide to the ultimate cytotoxic ifosforamide mustard and deactivation to 2- and 3-dechloroethylifosfamide with concomitant release of the neurotoxic chloroacetaldehyde. Activation is mediated by cytochrome P450 (CYP) 3A4 and deactivation by CYP3A4 and CYP2B6. The aim of this study was to investigate modulation of the CYP-mediated metabolism of ifosfamide with ketoconazole, a potent inhibitor of CYP3A4, and rifampin (INN, rifampicin), an inducer of CYP3A4/CYP2B6. METHODS: In a double-randomized, 2-way crossover study a total of 16 patients received ifosfamide 3 g/m(2) per 24 hours intravenously, either alone or in combination with 200 mg ketoconazole twice daily (1 day before treatment and 3 days of concomitant administration) or 300 mg rifampin twice daily (3 days before treatment and 3 days of concomitant administration). Plasma pharmacokinetics and urinary excretion of ifosfamide, 2- and 3-dechloroethylifosfamide, and 4-hydroxyifosfamide were assessed in both courses. Data analysis was performed with a population pharmacokinetic model with a description of autoinduction of ifosfamide. RESULTS: Rifampin increased the clearance of ifosfamide at the start of therapy at 102%. The fraction of ifosfamide metabolized to the dechloroethylated metabolites was increased, whereas exposure to the metabolites was decreased as a result of increased elimination. The fraction metabolized and the exposure to 4-hydroxyifosfamide were not significantly influenced. Ketoconazole did not affect the fraction metabolized or the exposure to the dechloroethylated metabolites, whereas both parameters were reduced with 4-hydroxyifosfamide. CONCLUSIONS: Coadministration of ifosfamide with ketoconazole or rifampin did not produce changes in the pharmacokinetics of the parent or metabolites that may result in an increased benefit of ifosfamide therapy.
Leukopenic and/or thrombocytopenic effects of ifosfamide may be increased with concurrent or recent therapy if these medications /blood dyscarasia-causing medications/ cause the same effects; dosage adjustments of ifosfamide, if necessary, should be based on blood counts.
Additive bone marrow depression may occur; dosage reduction may be required when two or more bone marrow depressants, including radiation, are used concurrently or consecutively /with ifosfamide/.
For more Interactions (Complete) data for IFOSFAMIDE (7 total), please visit the HSDB record page.
Non-Human Toxicity Values
LD50 Rat oral 143 mg/kg
LD50 Rat ip 140 mg/kg
LD50 Rat sc 160 mg/kg
LD50 Rat iv 190 mg/kg
For more Non-Human Toxicity Values (Complete) data for IFOSFAMIDE (8 total), please visit the HSDB record page.
参考文献

[1]. Cancer Res . 1997 May 15;57(10):1946-54.

[2]. Drugs . 1991 Sep;42(3):428-67.

[3]. Cancer Res . 1996 Mar 15;56(6):1331-40.

[4]. Bone . 2005 Jul;37(1):74-86.

[5]. Urol . 2002 May;167(5):2229-34.

其他信息
Therapeutic Uses
Ifosfamide currently is approved for use in combination with other drugs for germ cell testicular cancer & is widely used to treat pediatric & adult sarcomas. Clinical trials also have shown ifosfamide to be active against carcinomas of the cervix & lung & against lymphomas. It is a common component of high-dose chemotherapy regimens with bone marrow or stem cell rescue; in these regimens, in total doses of 12-14 g/sq m, it may cause severe neurological toxicity, including coma & death. This toxicity is thought to result form a metabolite, chloracetaldehyde. In addition to hemorrhagic cystitis, ifosfamide causes nausea, vomiting, anorexia, leukopenia, nephrotoxicity, & CNS disturbances (especially somnolence & confusion).
Ifosfamide is indicated, in combination with other antineoplastic agents and a prophylactic agent against hemorrhagic cystitis (such as mesna), for treatment of germ cell testicular tumors. /Included in US product labeling/
Ifosfamide is indicated as reasonable medical therapy for treatment of head and neck carcinoma. (Evidence rating: IIID) /NOT included in US product labeling/
Ifosfamide is used for treatment of soft-tissue sarcomas, Ewing's sarcoma, and Hodgkin's and non-Hodgkin's lymphomas. /NOT included in US product labeling/
For more Therapeutic Uses (Complete) data for IFOSFAMIDE (9 total), please visit the HSDB record page.
Drug Warnings
It is a common component of high-dose chemotherapy regimens with bone marrow or stem cell rescue; in these regimens, in total doses of 12-14 g/sq m, it may cause severe neurological toxicity, including coma & death. This toxicity is thought to result form a metabolite, chloracetaldehyde. In addition to hemorrhagic cystitis, ifosfamide causes nausea, vomiting, anorexia, leukopenia, nephrotoxicity, & CNS disturbances (especially somnolence & confusion).
Ifosfamide is distributed into breast milk. Breast feeding is not recommended during chemotherapy because of the risks to the infant (adverse effects, mutagenicity, carcinogenicity).
The bone marrow depressant effects of ifosfamide may result in an increased incidence of microbial infection, delayed healing, and gingival bleeding. Dental work, whenever possible, should be completed prior to initiation of therapy or deferred until blood counts have returned to normal. Patients should be instructed in proper oral hygiene during treatment, including caution in use of regular toothbrushes, dental floss, and toothpicks.
Many side effects of antineoplastic therapy are unavoidable and represent the medication's pharmacologic action. Some of these (for example, leukopenia and thrombocytopenia) are actually used as parameters to aid in individual dosage titration.
For more Drug Warnings (Complete) data for IFOSFAMIDE (20 total), please visit the HSDB record page.
Pharmacodynamics
Ifosfamide requires activation by microsomal liver enzymes to active metabolites in order to exert its cytotoxic effects. Activation occurs by hydroxylation at the ring carbon atom 4 to form the unstable intermediate 4-hydroxyifosfamide. This metabolite than rapidly degrades to the stable urinary metabolite 4-ketoifosfamide. The stable urinary metabolite, 4-carboxyifosfamide, is formed upon opening of the ring. These urinary metabolites have not been found to be cytotoxic. N, N-bis (2-chloroethyl)-phosphoric acid diamide (ifosphoramide) and acrolein are also found. The major urinary metabolites, dechloroethyl ifosfamide and dechloroethyl cyclophosphamide, are formed upon enzymatic oxidation of the chloroethyl side chains and subsequent dealkylation. It is the alkylated metabolites of ifosfamide that have been shown to interact with DNA. Ifosfamide is cycle-phase nonspecific.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C7H15CL2N2O2P
分子量
261.09
精确质量
260.024
元素分析
C, 32.20; H, 5.79; Cl, 27.16; N, 10.73; O, 12.26; P, 11.86
CAS号
3778-73-2
相关CAS号
3778-73-2
PubChem CID
3690
外观&性状
White to off-white solid powder
密度
1.3±0.1 g/cm3
沸点
336.1±52.0 °C at 760 mmHg
熔点
48ºC
闪点
157.1±30.7 °C
蒸汽压
0.0±0.7 mmHg at 25°C
折射率
1.506
LogP
0.23
tPSA
51.38
氢键供体(HBD)数目
1
氢键受体(HBA)数目
4
可旋转键数目(RBC)
5
重原子数目
14
分子复杂度/Complexity
218
定义原子立体中心数目
0
SMILES
ClC([H])([H])C([H])([H])N1C([H])([H])C([H])([H])C([H])([H])OP1(N([H])C([H])([H])C([H])([H])Cl)=O
InChi Key
HOMGKSMUEGBAAB-UHFFFAOYSA-N
InChi Code
InChI=1S/C7H15Cl2N2O2P/c8-2-4-10-14(12)11(6-3-9)5-1-7-13-14/h1-7H2,(H,10,12)
化学名
N,3-bis(2-chloroethyl)-2-oxo-1,3,2lambda5-oxazaphosphinan-2-amine
别名
NSC-109724; Isophosphamide; Ifomide; NSC 109724; NSC109724; Iphosphamid; iphosphamide; Isoendoxan; IsoEndoxan; isophosphamide; Naxamide; Trade names: Cyfos; Ifex; Ifosfamidum
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 本产品在运输和储存过程中需避光。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~52 mg/mL (~199.2 mM)
Water: ~52 mg/mL (~199.2 mM)
Ethanol: ~52 mg/mL (~199.2 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (9.58 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (9.58 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (9.58 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 25 mg/mL (95.75 mM) in 0.5% CMC-Na/saline water (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.8301 mL 19.1505 mL 38.3010 mL
5 mM 0.7660 mL 3.8301 mL 7.6602 mL
10 mM 0.3830 mL 1.9150 mL 3.8301 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01873326 Active
Recruiting
Drug: Paclitaxel
Drug: Ifosfamide
Germ Cell Tumors Memorial Sloan Kettering
Cancer Center
June 2013 Phase 2
NCT02227199 Active
Recruiting
Drug: Brentuximab Vedotin
Drug: Carboplatin
Recurrent Hodgkin Lymphoma
Refractory Hodgkin Lymphoma
University of Washington October 10, 2014 Phase 1
Phase 2
NCT01959698 Active
Recruiting
Drug: Carboplatin
Drug: Carfilzomib
CD20 Positive Roswell Park Cancer Institute April 17, 2014 Phase 1
NCT03016871 Active
Recruiting
Drug: Carboplatin
Drug: Etoposide
Recurrent Hodgkin Lymphoma
Refractory Hodgkin Lymphoma
City of Hope Medical Center March 2009 Phase 2
NCT04665765 Active
Recruiting
Drug: Carboplatin
Drug: Etoposide
Refractory Diffuse Large B-
Cell Lymphoma
City of Hope Medical Center January 18, 2021 Phase 2
相关产品
联系我们