规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
靶点 |
β-catenin/TCF mediated transcription; β-catenin/CBP interaction; CBP (IC50 = 3 μM)
|
||
---|---|---|---|
体外研究 (In Vitro) |
在 MCF7 细胞中,ICG-001 (5 μM) 可抑制瘦素诱导的 EMT、侵袭和肿瘤球形成 [1]。在早老蛋白-1突变细胞中,ICG-001可以在表型上拯救正常神经生长因子(NGF)诱导的神经元分化和神经元生长,突出了神经元分化的重要性以及TCF/β-连环蛋白信号通路在神经突生长中的功能。 2]。在 SW480 细胞中,ICG-001 (25 μM) 处理降低了生存素和细胞周期蛋白 D1 RNA 和蛋白质的稳态水平; β-连环蛋白可增加这两种蛋白质的含量。 ICG-001 可在体外抑制结肠癌细胞的发育,并特异性引发转化细胞的凋亡,但不会引发正常结肠细胞的凋亡 [3]。
|
||
体内研究 (In Vivo) |
在小鼠中,ICG-001(每天 5 毫克/千克)强烈抑制 β-连环蛋白信号传导,同时保留上皮细胞 [2]。服用水溶性 ICG-001 9 周后,结肠和小肠息肉的形成减少了 42%。这种影响与非甾体类抗炎药物 MK-231 的效果相当,后者已在该模型中反复证明了疗效。在 SW620 裸鼠肿瘤消退异种移植模型中,ICG-001(150 mg/kg,静脉注射)在 19 天的治疗过程中引起肿瘤体积显着减小,但未导致死亡或体重减轻 [3]。
|
||
酶活实验 |
Coimmunoprecipitations [4]
对于β-catenin-CBP/P300/E-cadherin/N-cadherin共免疫沉淀,MGC-803细胞分别在ICG-001条件下孵育48 h, 100 μg蛋白提取物在共免疫沉淀(Co-IP)缓冲液中稀释至1 mL。蛋白样品中加入2 μg β-catenin 抗体,在4℃下旋转孵育过夜。加入20 μL 50%蛋白A/ g琼脂糖珠浆(在Co-IP缓冲液中平衡),4℃孵育2 h后,用Co-IP缓冲液洗涤4次(每次洗涤1 ml),并用1倍上样缓冲液稀释。Western blotting检测CBP、P300 、E-cadherin、N-cadherin。 亲和纯化。[3] 细胞在蛋白结合缓冲液中裂解[PBB, 20 mM Hepes, pH 7.9/100 mM NaCl/0.5 mM EDTA/0.5% Nonidet P-40/6 mM MgCl2/5 mM 2-巯基乙醇/一片完全蛋白酶抑制剂混合物]。生物素化的ICG-002在室温下与含有50% DMSO和50% PBB的缓冲液中含有50%链亲和素琼脂糖珠的50%浆液结合过夜。洗净微珠以去除未结合的ICG-002,然后与全细胞裂解液孵育。用100 μM ICG-001特异性洗脱的蛋白或用SDS煮沸洗脱的蛋白进行免疫印迹和银染色。 |
||
细胞实验 |
RLE-6TN细胞qPCR研究。[3]
为评价ICG-001对α-SMA和1型胶原表达的影响,在ICG-001(5.0 μM)存在或不存在的情况下,用TGF-β1 (0.25 ng/mL)处理RLE-6TN细胞。24 h后,收获细胞,分离mRNA进行qPCR分析。RNA用SuperScript逆转录酶进行逆转录。采用实时荧光定量PCR系统HT7900,采用SYBR-Green PCR进行定量PCR。扩增方案设定为:95℃变性10 min, 95℃变性15 s,退火/延伸1 min, 60℃数据采集40个循环。 所用引物对如下:α-SMA正向5′-ATGGCTCCGGGCTCTGTAA-3′和反向5′-ACAGCCCTGGGAGCATCA-3′;胶原蛋白1α正向5 ‘ -TTGACCCTAACCAAGGATGC-3 ’和反向5 ‘ - caccccttctgcgttgtat -3 ’。 肺成纤维细胞。[3] 原代成纤维细胞培养来源于接受移植手术的IPF患者的肺组织,经相关机构的知情同意和伦理批准,如前所述。从ATCC获得1例IPF患者的细胞系(CCL-134)。以ICG-001(5 μM)或DMSO对照处理IPF成纤维细胞48 h后,分离mRNA进行qPCR分析。 |
||
动物实验 |
|
||
参考文献 |
|
||
其他信息 |
(6S,9aS)-6-[(4-hydroxyphenyl)methyl]-8-(1-naphthalenylmethyl)-4,7-dioxo-N-(phenylmethyl)-3,6,9,9a-tetrahydro-2H-pyrazino[1,2-a]pyrimidine-1-carboxamide is a peptide.
Perturbations in the adipocytokine profile, especially higher levels of leptin, are a major cause of breast tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether leptin is involved in epithelial-mesenchymal transition (EMT). Here, we provide molecular evidence that leptin induces breast cancer cells to undergo a transition from epithelial to spindle-like mesenchymal morphology. Investigating the downstream mediator(s) that may direct leptin-induced EMT, we found functional interactions between leptin, metastasis-associated protein 1 (MTA1), and Wnt1 signaling components. Leptin increases accumulation and nuclear translocation of β-catenin leading to increased promoter recruitment. Silencing of β-catenin or treatment with the small molecule inhibitor, ICG-001, inhibits leptin-induced EMT, invasion, and tumorsphere formation. Mechanistically, leptin stimulates phosphorylation of glycogen synthase kinase 3β (GSK3β) via Akt activation resulting in a substantial decrease in the formation of the GSK3β-LKB1-Axin complex that leads to increased accumulation of β-catenin. Leptin treatment also increases Wnt1 expression that contributes to GSK3β phosphorylation. Inhibition of Wnt1 abrogates leptin-stimulated GSK3β phosphorylation. We also discovered that leptin increases the expression of an important modifier of Wnt1 signaling, MTA1, which is integral to leptin-mediated regulation of the Wnt/β-catenin pathway as silencing of MTA1 inhibits leptin-induced Wnt1 expression, GSK3β phosphorylation, and β-catenin activation. Furthermore, analysis of leptin-treated breast tumors shows increased expression of Wnt1, pGSK3β, and vimentin along with higher nuclear accumulation of β-catenin and reduced E-cadherin expression providing in vivo evidence for a previously unrecognized cross-talk between leptin and MTA1/Wnt signaling in epithelial-mesenchymal transition of breast cancer cells.[2] Idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia is a ravaging condition of progressive lung scarring and destruction. Anti-inflammatory therapies including corticosteroids have limited efficacy in this ultimately fatal disorder. An important unmet need is to identify new agents that interact with key molecular pathways involved in the pathogenesis of pulmonary fibrosis to prevent progression or reverse fibrosis in these patients. Because aberrant activation of the Wnt/beta-catenin signaling cascade occurs in lungs of patients with IPF, we have targeted this pathway for intervention in pulmonary fibrosis using ICG-001, a small molecule that specifically inhibits T-cell factor/beta-catenin transcription in a cyclic AMP response-element binding protein binding protein (CBP)-dependent fashion. ICG-001 selectively blocks the beta-catenin/CBP interaction without interfering with the beta-catenin/p300 interaction. We report here that ICG-001 (5 mg/kg per day) significantly inhibits beta-catenin signaling and attenuates bleomycin-induced lung fibrosis in mice, while concurrently preserving the epithelium. Administration of ICG-001 concurrent with bleomycin prevents fibrosis, and late administration is able to reverse established fibrosis and significantly improve survival. Because no effective treatment for IPF exists, selective inhibition of Wnt/beta-catenin-dependent transcription suggests a potential unique therapeutic approach for pulmonary fibrosis.[2] Inherited and somatic mutations in the adenomatous polyposis coli occur in most colon cancers, leading to activation of beta-catenin-responsive genes. To identify small molecule antagonists of this pathway, we challenged transformed colorectal cells with a secondary structure-templated chemical library, looking for compounds that inhibit a beta-catenin-responsive reporter. We identified ICG-001, a small molecule that down-regulates beta-catenin/T cell factor signaling by specifically binding to cyclic AMP response element-binding protein. ICG-001 selectively induces apoptosis in transformed cells but not in normal colon cells, reduces in vitro growth of colon carcinoma cells, and is efficacious in the Min mouse and nude mouse xenograft models of colon cancer.[3] Background: ICG-001, a small molecule, binds CREB-binding protein (CBP) to disrupt its interaction with β-catenin and inhibits CBP function as a co-activator of Wnt/β-catenin-mediated transcription. Given its ability to inhibit Wnt/β-catenin signaling pathway, ICG-001 has been used in some tumor types to exert its anticarcinogenic effect. Here, we examined ICG-001 and its potential role as a therapeutic in gastric cancer (GC). Methods: The gastric cancer cell lines SGC-7901, MGC-803, BGC-823 and MKN-45 were used in vitro and in vivo. The abilities of cell proliferation, tumor sphere formation, metastasis, tumorgenesis and chemoresistance to chemotherapy drugs in vitro were evaluated by MTT assay, colony formation assay, flow cytometry, migration and invasion assay, and tumor spheres culture. The in vivo experiments were performed using a subcutaneous transplantation tumor model in athymic nude mice. Alterations at RNA and protein levels were followed by qRT-PCR, western blot, coimmunoprecipitations and immunofluorescence assay. Results: In this study, we showed that ICG-001 significantly inhibited growth and metastasis of multiple GC cell lines, induced cell apoptosis, and augmented in vitro tumor spheres suppression when used in combination with chemotherapy drugs probably through robustly blocking association of β-catenin with CBP and N-cadherin, but promoting association of β-catenin with P300 and E-cadherin, instead of altering the distribution and expression of β-catenin. Conclusions: Our findings suggest that ICG-001 suppresses GC cell line growth, metastasis and reduces its stem cell-like properties and chemoresistance, indicating that ICG-001 is a potentially useful small molecule therapeutic for GC. Keywords: Gastric cancer; Growth; ICG-001; Stem cell-like; Wnt/β-catenin signaling pathway.[4] |
分子式 |
C33H32N4O4
|
---|---|
分子量 |
548.63
|
精确质量 |
548.242
|
元素分析 |
C, 72.24; H, 5.88; N, 10.21; O, 11.66
|
CAS号 |
780757-88-2
|
相关CAS号 |
1422253-38-0 (PRI-724);847591-62-2 (deleted);780757-88-2 (ICG001);
|
PubChem CID |
11238147
|
外观&性状 |
White to off-white solid powder
|
密度 |
1.4±0.1 g/cm3
|
沸点 |
895.6±65.0 °C at 760 mmHg
|
熔点 |
133-134ºC
|
闪点 |
495.4±34.3 °C
|
蒸汽压 |
0.0±0.3 mmHg at 25°C
|
折射率 |
1.722
|
LogP |
4.01
|
tPSA |
93.19
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
4
|
可旋转键数目(RBC) |
6
|
重原子数目 |
41
|
分子复杂度/Complexity |
930
|
定义原子立体中心数目 |
2
|
SMILES |
C1CN([C@H]2CN(C(=O)[C@@H](N2C1=O)CC3=CC=C(C=C3)O)CC4=CC=CC5=CC=CC=C54)C(=O)NCC6=CC=CC=C6
|
InChi Key |
HQWTUOLCGKIECB-IHLOFXLRSA-N
|
InChi Code |
InChI=1S/C33H32N4O4/c38-27-15-13-23(14-16-27)19-29-32(40)35(21-26-11-6-10-25-9-4-5-12-28(25)26)22-30-36(18-17-31(39)37(29)30)33(41)34-20-24-7-2-1-3-8-24/h1-16,29-30,38H,17-22H2,(H,34,41)/t29-,30+/m1/s1
|
化学名 |
rel-(6R,9aR)-Hexahydro-6-[(4-hydroxyphenyl)methyl]-8-(1-naphthalenylmethyl)-4,7-dioxo-N-(phenylmethyl)-2H-pyrazino[1,2-a]pyrimidine-1(6H)-carboxamide
|
别名 |
ICG-001; ICG 001; ICG-001; 847591-62-2; 780757-88-2; (S,S)-ICG 001; (6S,9aS)-N-benzyl-6-(4-hydroxybenzyl)-8-(naphthalen-1-ylmethyl)-4,7-dioxooctahydro-1H-pyrazino[1,2-a]pyrimidine-1-carboxamide; (6S,9aS)-6-(4-hydroxybenzyl)-N-benzyl-8-(naphthalen-1-ylmethyl)-4,7-dioxo-hexahydro-2H-pyrazino[1,2-a]pyrimidine-1(6H)-carboxamide; ICG001
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (4.56 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: 2.5 mg/mL (4.56 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浮液; 超声和加热处理 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (4.56 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 1.67 mg/mL (3.04 mM) in 15% Cremophor EL + 85% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 5 中的溶解度: 1.67 mg/mL (3.04 mM) in 17% Polyethylene glycol 12-hydroxystearate in Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.8227 mL | 9.1136 mL | 18.2272 mL | |
5 mM | 0.3645 mL | 1.8227 mL | 3.6454 mL | |
10 mM | 0.1823 mL | 0.9114 mL | 1.8227 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
th> |
---|
td> |
td> |