规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
靶点 |
Glucosylceramide synthase
|
---|---|
体外研究 (In Vitro) |
编码溶酶体酶葡糖脑苷酶(GCase)的基因GBA的突变是发展包括帕金森病(PD)在内的突触核蛋白疾病的最大遗传风险因素。此外,携带突变GBA等位基因的帕金森病患者发病较早,运动和非运动症状的疾病进展加快。对突触核蛋白病小鼠模型的临床前研究表明,使用中枢神经系统渗透剂小分子通过抑制葡糖神经酰胺合酶(GCS)来调节鞘脂代谢途径可能是突触核蛋白疾病的潜在治疗方法。在这里,我们的目的是通过抑制GCase的主要糖脂底物葡糖基神经酰胺(GlcCr)的从头合成来减轻脂质储存负担。我们之前已经表明,系统性GCS抑制减少了GlcCr和葡糖基鞘氨醇(GlcSph)的积累,减缓了海马中α-突触核蛋白的积累,并改善了认知缺陷。[1]
用 Ibiglustat (SAR402671)(1 μM,15 天)L-苹果酸处理的法布里病 (FD) 细胞中的 GL-3 水平与未处理的 WT 细胞几乎相同,表明 Ibiglustat L-苹果酸可以防止进一步的 GL-3 积累并增加 FD 心肌细胞中这种鞘脂的含量 [4]。 |
体内研究 (In Vivo) |
Venglustat降低了Gaucher相关突触核蛋白病小鼠的糖脂含量。[1]
Venglustat,一种脑渗透GCS抑制剂,在GBA和Gaucher相关突触核蛋白病的小鼠模型中减少了葡萄糖神经酰胺。[1] venglustat对GCS的抑制减少了Gaucher相关突触核蛋白病小鼠海马中异常蛋白质聚集体的积累。[1] Venglustat给药防止了Gaucher相关突触核蛋白病小鼠海马相关记忆缺陷的发展。[1] |
酶活实验 |
Venglustat是一种小分子葡萄糖神经酰胺合酶(GCS)抑制剂,旨在减少葡萄糖神经酰胺(GL-1)的产生,因此有望显著减少基于葡萄糖神经酰胺的鞘糖脂的形成。由于其对糖脂形成的影响,GCS抑制在许多影响糖脂代谢的疾病中具有治疗潜力。因此,venglustat正在开发用于多种疾病的底物还原治疗,包括3型戈谢病、与GBA突变相关的帕金森病、Fabry病、GM2神经节苷脂病和常染色体显性遗传的多囊肾病[2]。
|
细胞实验 |
通过液相色谱法和串联质谱法(LC–MS/MS)对鞘脂进行定量分析28。简言之,将脑组织在10体积的水(w/v)中匀浆。用1ml提取溶液(50∶50乙腈/甲醇)通过蛋白质沉淀提取10微升匀浆或血浆。如前所述,通过液-液提取法提取小鼠CSF鞘脂37。使用Waters Acquity UPLC和Cortecs HILIC柱(2.1mm × 100毫米、2.7微米颗粒),并通过API 5000三重四极质谱仪以MRM模式进行分析。通过Waters Acquity UPLC和BEH HILIC柱(2.1mm × 100毫米,1.7微米颗粒),并通过API 6500三重四极质谱仪以MRM模式进行分析。GlcCr和GlcSph标准品分别购自Matreya,LLC和Avanti Polar Lipids。所有程序都是在不了解基因型或治疗的情况下进行的[1]。
|
动物实验 |
Administration of the glucosylceramide synthase inhibitors: venglustat and tool compound GZ667161 [1]
A subset of animals received glucosylceramide synthase inhibitors, venglustat (aka GZ402671) or GZ667161, via pelleted diet at 0.03%- or 0.033%-wt/wt, respectively. For each experiment, sex and siblings were randomly matched for group assignment. Target engagement and exposure confirmation studies included GbaD409V/D409V or GbaD409V/WT mice administered venglustat for two consecutive weeks beginning at approximately 4 months of age. Mice included in sustained GCS inhibition studies were administered either GZ667161 or venglustat upon weaning at ~ 4 weeks of age. Wild-type, baseline, and control groups were fed vehicle rodent chow. GCS inhibitor and vehicle diets were continuously provided to mice until necropsy and tissue collection.[1] CSF collection[1] Animals were anesthetized via an intraperitoneal injection of a 10:1 Ketamine/Xylazine cocktail prior to being placed into a surgical ear bar rig. After making a midline cut to remove a small patch of skin from the head, the fat and muscle layers were opened using a cautery pen (Thermo Fisher Scientific; Waltham, MA) to reveal the base of the skull and occipital crest. The remaining tissue was then removed to expose the cisterna magna membrane. Using a pulled glass pipette (World Precision Instruments; Sarasota County, FL), the cisterna magna membrane was punctured to allow CSF to flow freely into the pipette via capillary action. After collecting approximately 10–20 uL, CSF was transferred to a clean protein lo-bind tube (Eppendorf; Hamburg, Germany). CSF samples with visible blood contamination were excluded from analyses.[1] Animal perfusion and tissue and blood collection[1] Prior to whole blood collection, mice were anesthetized via a 200 uL intraperitoneal injection of sodium pentobarbital. Following the loss of response to a foot-pinch and corneal reflex, approximately 250 uL of whole blood was collected from the retro-orbital sinus using a glass capillary tube into a Microtainer® tube (BD Biosciences; Billerica, MA) containing K2 EDTA anticoagulant. Whole blood samples were collected retro-orbitally and immediately placed on ice. Plasma was isolated after 5 min centrifugation at 8000 RPM at 4 °C. Immediately following blood collection, animals were transcardially perfused with cold phosphate-buffered saline (PBS) at a rate of 18 mL/minute, for two minutes. After cutting the brains sagittally along the midline, the left hemisphere was microdissected into various regions, snap-frozen in liquid nitrogen, and stored at − 80 °C until use27. The right hemisphere was post-fixed in 10% neutral-buffered formalin for 48–72 h. Right hemispheres were then washed three times in 1X PBS and transferred to 30% sucrose for 24–48 h. Right hemispheres were embedded in O.C.T. and sectioned into 20 µm sections using a cryostat, as previously described. |
参考文献 |
分子式 |
C24H30FN3O7S
|
---|---|
分子量 |
523.574308872223
|
精确质量 |
523.178
|
CAS号 |
1629063-78-0
|
相关CAS号 |
Ibiglustat;1401090-53-6;Ibiglustat succinate;1629063-80-4
|
PubChem CID |
60199241
|
外观&性状 |
White to off-white solid
|
tPSA |
178Ų
|
氢键供体(HBD)数目 |
4
|
氢键受体(HBA)数目 |
11
|
可旋转键数目(RBC) |
8
|
重原子数目 |
36
|
分子复杂度/Complexity |
662
|
定义原子立体中心数目 |
2
|
SMILES |
S1C(C2C=CC(=CC=2)F)=NC(=C1)C(C)(C)NC(=O)O[C@@H]1CN2CCC1CC2.OC(C(=O)O)CC(=O)O
|
InChi Key |
SQXUKOJKIWCALK-AAXLQGCPSA-N
|
InChi Code |
InChI=1S/C20H24FN3O2S.C4H6O5/c1-20(2,17-12-27-18(22-17)14-3-5-15(21)6-4-14)23-19(25)26-16-11-24-9-7-13(16)8-10-24;5-2(4(8)9)1-3(6)7/h3-6,12-13,16H,7-11H2,1-2H3,(H,23,25);2,5H,1H2,(H,6,7)(H,8,9)/t16-;2-/m10/s1
|
化学名 |
[(3S)-1-azabicyclo[2.2.2]octan-3-yl] N-[2-[2-(4-fluorophenyl)-1,3-thiazol-4-yl]propan-2-yl]carbamate;(2S)-2-hydroxybutanedioic acid
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ≥ 100 mg/mL (~191.00 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (4.77 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (4.77 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (4.77 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.9100 mL | 9.5498 mL | 19.0996 mL | |
5 mM | 0.3820 mL | 1.9100 mL | 3.8199 mL | |
10 mM | 0.1910 mL | 0.9550 mL | 1.9100 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。