规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
Estrogen Receptor/ER (IC50 = 9.4 nM)
|
||
---|---|---|---|
体外研究 (In Vitro) |
FuLvestrant(ICI 182780;ZD 9238;ZM 182780)是一种非常有效的选择性雌激素作用抑制剂,在动物模型和人类乳腺癌细胞中显示出优异的生长抑制作用。 fuLvestrant 的 IC50 为 0.29 nM,可阻止 MCF-7 人乳腺癌细胞的发育。氟维司群的相对结合亲和力为 0.89。 FuLvestrant 保持其纯雌激素拮抗剂活性,同时具有显着增强的抗雌激素效力 [1]。氟维司群是一种下调 ER 的 ER 拮抗剂,是第一类新型内分泌控制药物[3]。 MCF-7 细胞中的 ERα 表达不受 1 μM ICI 47699 处理的影响,而被 100 nM FuLvestrant 完全抑制 [4]。
|
||
体内研究 (In Vivo) |
当单独给药时,氟维司群 (ICI 182,780) 在未成熟雌性大鼠中不表现出胃肠外 (sc) 促子宫活性。氟维司群在皮下注射剂量为 0.5 mg/kg/天时完全对抗雌激素的作用。口服氟维司群(5 mg/kg/天)治疗和皮下注射在质量上具有可比性[1]。在裸鼠的两个人类乳腺癌模型中。在其中一个模型中单次注射氟维司群 (5 mg) 后,MCF-7 肿瘤异种移植物的生长完全停止至少 4 周。在携带 MCF-7 异种移植物的裸鼠中进行的其他实验中,氟维司群抑制现有肿瘤生长的时间是 ICI 47699 治疗的两倍,并且延迟肿瘤生长的时间更长。大[3]。第 40 天时,氟维司群显示出 88% 的肿瘤生长抑制 (TGI) [4]。
|
||
酶活实验 |
该实验室之前的研究描述了一系列具有纯抗雌激素活性的7α-烷基酰胺雌二醇类似物,以ICI 164384为例。现已鉴定出一种新化合物,7-α-[9-(4,4,5,5,5-五氟戊基亚磺酰基)壬基]雌-1,3,5(10)-三烯-3,17-β二醇(ICI 182780),其显著提高了抗雌激素效力并保留了纯雌激素拮抗剂活性。ICI 182780在未成熟大鼠中的抗子宫营养效力比ICI 164384高10倍以上(50%有效剂量分别为0.06和0.9mg/kg)。体内效力的这种数量级增加也部分反映在雌激素受体的内在活性上。与雌二醇(1.0)相比,ICI 182780和ICI 164384的相对结合亲和力分别为0.89和0.19。类似地,ICI 182780在MCF-7人乳腺癌症细胞中的体外生长抑制效力超过ICI 164384,其中分别记录了0.29和1.3nM的50%抑制浓度。ICI 182780是一种比4'-羟基三苯氧胺更有效的MCF-7生长抑制剂,在4'-羟三苯氧铵达到最大50%抑制的条件下,细胞数量减少了80%。与三苯氧胺处理的细胞相比,ICI 182780处理的细胞培养物中参与DNA合成的细胞比例显著降低,这反映了疗效的提高。[1]
由于其良好的耐受性,长期以来,内分泌疗法一直被认为是激素敏感性转移性癌症的首选治疗方法。然而,可用的选择性雌激素受体调节剂(如三苯氧胺)的雌激素激动剂作用,以及具有相似作用模式的内分泌疗法之间交叉耐药性的发展,导致需要通过不同机制发挥作用的新疗法。Fulvestrant(“Aslodex”)是一种新型内分泌治疗药物中的第一种,它是一种雌激素受体(ER)拮抗剂,可以下调ER,并且没有激动剂作用。本文概述了目前对ER信号传导的理解,并说明了氟维司群的独特作用方式。临床前和临床研究数据支持这种新型ER拮抗剂的新作用机制[3]。 |
||
细胞实验 |
细胞活力测定[2]
将接种在6孔板中的MCF7细胞用100 nM阴性对照或miR-214模拟物和抑制剂转染24小时。将细胞以8×103个细胞/孔的密度胰蛋白酶消化到96孔板中,然后用5μM的4-OHT或1μM的fulvestrant (FUL)处理72小时。通过3-[4,5-二甲基噻唑-2-基]-2,5-二苯基溴化四唑(MTT)法评估细胞存活率。 细胞自噬分析[2] 用GFP-LC3质粒(Addgene)转染细胞,然后用0.1%v/v乙醇载体或5μM 4-OHT或1μM氟维司群(FUL)处理48小时。在配备油浸透镜(40×)的共聚焦显微镜下,用405和488 nm激发激光观察GFP-LC3-II阳性斑点图案。使用Image J程序计数自噬体的数量 |
||
动物实验 |
|
||
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Fulvestrant was rapidly cleared by the hepatobiliary route with excretion primarily via the feces (approximately 90%). Renal elimination was negligible (less than 1%). 3 to 5 L/kg Peak plasma concentrations of fulvestrant are attained approximately 7 days after IM administration and persist for at least 1 month. Steady-state plasma fulvestrant concentrations usually are achieved within 3-6 months when the drug is administered once-monthly by IM injection. Fulvestrant appears to be rapidly and extensively distributed, principally into the extravascular space 99% (mainly VLDL, LDL, and HDL lipoprotein fractions). Has been shown to cross the placenta and distribute into milk in rats. For more Absorption, Distribution and Excretion (Complete) data for FULVESTRANT (8 total), please visit the HSDB record page. Metabolism / Metabolites Metabolism of fulvestrant appears to involve combinations of a number of possible biotransformation pathways analogous to those of endogenous steroids, including oxidation, aromatic hydroxylation, conjugation with glucuronic acid and/or sulphate at the 2, 3 and 17 positions of the steroid nucleus, and oxidation of the side chain sulphoxide. Identified metabolites are either less active or exhibit similar activity to fulvestrant in antiestrogen models. Studies using human liver preparations and recombinant human enzymes indicate that cytochrome P-450 3A4 (CYP 3A4) is the only P-450 isoenzyme involved in the oxidation of fulvestrant; however, the relative contribution of P-450 and non-P-450 routes in vivo is unknown. Biotransformation and disposition of fulvestrant in humans have been determined following intramuscular and intravenous administration of 14C-labeled fulvestrant. Metabolism of fulvestrant appears to involve combinations of a number of possible biotransformation pathways analogous to those of endogenous steroids, including oxidation, aromatic hydroxylation, conjugation with glucuronic acid and/or sulphate at the 2, 3 and 17 positions of the steroid nucleus, and oxidation of the side chain sulphoxide. Metabolites of fulvestrant exhibit pharmacologic activity that is similar to or less than that of the parent compound. In vitro studies indicate that CYP3A4 is the only enzyme involved in fulvestrant oxidation; however, the relative contribution of CYP and non-CYP routes in vivo currently is not known. Biological Half-Life 40 days The elimination half-life of fulvestrant is about 40 days. |
||
毒性/毒理 (Toxicokinetics/TK) |
Hepatotoxicity
Fulvestrant therapy is said to be associated with serum enzyme elevations in up to 15% of patients, but the elevations are generally asymptomatic, transient and mild, rarely requiring dose adjustment or discontinuation. ALT elevations above 5 times the upper limit of normal occurred in only 1% to 2% of patients. However, specifics on the timing and course of serum enzyme elevations during fulvestrant therapy have not been described. In addition, no cases of clinically apparent liver injury with jaundice were reported in the prelicensure controlled trials of fulvestrant and none have been published since its approval in the United States and more wide-scale use. Nevertheless, the product label for fulvestrant mentions that "hepatitis and liver failure have been reported infrequently ( Likelihood score: E* (unproven but suspected cause of clinically apprent liver injury). Protein Binding 99% (mainly VLDL, LDL, and HDL) |
||
参考文献 |
|
||
其他信息 |
Therapeutic Uses
Antineoplastic Agents; Hormonal Estrogen Antagonists Fulvestrant is indicated for the treatment of hormone receptor positive metastatic breast cancer in postmenopausal women with disease progression following antiestrogen therapy. /Included in US product label/ Drug Warnings /Fulvestrant is contraindicated in/ pregnancy, known hypersensitivity to fulvestrant, benzyl alcohol, or any ingredient in the formulation. Because fulvestrant is administered by IM injection, the drug should not be used in patients with bleeding diatheses or thrombocytopenia or in those receiving anticoagulant therapy. The most common adverse effects of fulvestrant are adverse GI effects (e.g., nausea, vomiting, constipation, diarrhea, abdominal pain), headache, back pain, vasodilation (hot flushes), and pharyngitis, which occurred in approximately 52, 15, 14, 18, and 16% of patients, respectively, who received the drug in clinical studies. Other adverse effects occurring in 5-23% of patients receiving fulvestrant (in order of descending frequency) include asthenia, pain, nutritional disorders, bone pain, dyspnea, injection site pain, increased cough, pelvic pain, anorexia, peripheral edema, rash, chest pain, flu syndrome, dizziness, insomnia, fever, paresthesia, urinary tract infection, depression, anxiety, and sweating. Injection site reactions with mild transient pain and inflammation were reported in 7% of patients receiving a single 5-mL injection of fulvestrant in one study and in 27% of those who received two 2.5-mL injections of the drug in another study. For more Drug Warnings (Complete) data for FULVESTRANT (7 total), please visit the HSDB record page. Pharmacodynamics Fulvestrant for intramuscular administration is an estrogen receptor antagonist without known agonist effects. |
分子式 |
C32H47F5O3S
|
|
---|---|---|
分子量 |
606.77
|
|
精确质量 |
606.316
|
|
元素分析 |
C, 63.34; H, 7.81; F, 15.66; O, 7.91; S, 5.28
|
|
CAS号 |
129453-61-8
|
|
相关CAS号 |
Fulvestrant (Standard);129453-61-8;Fulvestrant (S enantiomer);1316849-17-8;Fulvestrant (R enantiomer);1807900-80-6;Fulvestrant-d3
|
|
PubChem CID |
104741
|
|
外观&性状 |
White to off-white solid powder
|
|
密度 |
1.2±0.1 g/cm3
|
|
沸点 |
674.8±55.0 °C at 760 mmHg
|
|
熔点 |
104-106°C
|
|
闪点 |
361.9±31.5 °C
|
|
蒸汽压 |
0.0±2.2 mmHg at 25°C
|
|
折射率 |
1.522
|
|
LogP |
7.92
|
|
tPSA |
76.74
|
|
氢键供体(HBD)数目 |
2
|
|
氢键受体(HBA)数目 |
9
|
|
可旋转键数目(RBC) |
14
|
|
重原子数目 |
41
|
|
分子复杂度/Complexity |
854
|
|
定义原子立体中心数目 |
6
|
|
SMILES |
C[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@@H]2O)[C@@H](CC4=C3C=CC(=C4)O)CCCCCCCCCS(=O)CCCC(C(F)(F)F)(F)F
|
|
InChi Key |
VWUXBMIQPBEWFH-WCCTWKNTSA-N
|
|
InChi Code |
InChI=1S/C32H47F5O3S/c1-30-17-15-26-25-12-11-24(38)21-23(25)20-22(29(26)27(30)13-14-28(30)39)10-7-5-3-2-4-6-8-18-41(40)19-9-16-31(33,34)32(35,36)37/h11-12,21-22,26-29,38-39H,2-10,13-20H2,1H3/t22-,26-,27+,28+,29-,30+,41?/m1/s1
|
|
化学名 |
(7R,8R,9S,13S,14S,17S)-13-methyl-7-[9-(4,4,5,5,5-pentafluoropentylsulfinyl)nonyl]-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthrene-3,17-diol
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: 2.75 mg/mL (4.53 mM) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浮液;超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (4.12 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浮液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: 2.08 mg/mL (3.43 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。 配方 4 中的溶解度: ≥ 2.08 mg/mL (3.43 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将100μL 20.8mg/mL澄清DMSO储备液加入900μL玉米油中,混合均匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 5 中的溶解度: 5% DMSO +95%Corn oil : 30mg/mL 配方 6 中的溶解度: 2.5 mg/mL (4.12 mM) in 15% Solutol HS 15 10% Cremophor EL 35% PEG 400 40% water (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.6481 mL | 8.2404 mL | 16.4807 mL | |
5 mM | 0.3296 mL | 1.6481 mL | 3.2961 mL | |
10 mM | 0.1648 mL | 0.8240 mL | 1.6481 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。