规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
RdRP ( IC50 = 341 nM )
|
|
---|---|---|
体外研究 (In Vitro) |
体外活性:法匹拉韦显示抗流感病毒活性,对于甲型流感病毒,IC50范围为0.013至0.48 μg/ml,对于乙型流感病毒,IC50范围为0.039至0.089 μg/ml,对于甲型流感病毒,IC50范围为0.030至0.057 μg/ml。丙型流感病毒。在哺乳动物细胞系(MDCK 细胞、Vero 细胞、HEL 细胞、A549 细胞、HeLa 细胞和 HEp-2 细胞)中,法匹拉韦在浓度高达 1,000 μg/ml 时没有显示出细胞毒性。在接种季节性甲型流感 (H1N1) 病毒的 MDCK 细胞中,法匹拉韦会诱导致命突变。激酶测定:法匹拉韦(也称为 T-705)是一种有效的、选择性的 RNA 依赖性 RNA 聚合酶抑制剂,用于治疗流感病毒感染。 Favipiravir 显示出抗流感病毒活性,对于甲型流感病毒,IC50 范围为 0.013 至 0.48 μg/ml,对于乙型流感病毒,IC50 范围为 0.039 至 0.089 μg/ml,对于丙型流感病毒,IC50 范围为 0.030 至 0.057 μg/ml。细胞测定:T-705 的细胞毒性通过 XTT 测定进行评估。 XTT 通过 MDCK 细胞、Vero 细胞、HEL 细胞、A549 细胞、HeLa 细胞和 HEp-2 细胞中的酶转化为水性甲臜。在 96 孔培养板中用测试介质(含 10% FCS 的 EMEM)将化合物稀释至适当浓度(体积,100 μl),其中每孔含有 2 × 103 个细胞/100 μL 的浓度。将测试板在 37°C、100% 湿度和 5% CO2 下孵育 3 天。 3天后,添加50μl XTT试剂(1mg/ml,在含有5mM吩嗪硫酸甲酯的不含FCS的EMEM中),并通过用酶标仪测量450nm处的吸光度来分析反应产物。细胞毒性以 50% 细胞抑制浓度 (CC50) 表示。
|
|
体内研究 (In Vivo) |
在感染流感病毒的小鼠中,法匹拉韦(200 mg/kg/天,口服)可保护小鼠免于因流感病毒感染而死亡。在实验性感染埃博拉病毒的小鼠中,法匹拉韦可有效阻断病毒产生,在开始治疗后 2 天和 6 天分别达到 95% 和 99.6% 的抗病毒效果。
|
|
细胞实验 |
在 MNV/RAW 264.7 细胞系中使用基于 MTS 的 CPE 减少测定,评估法匹拉韦 (T 705) 的抗病毒活性。因此,接种含有 1×104 细胞/孔 RAW 264.7 细胞的 96 孔板,并以 0.01 的感染复数 (MOI) 注射 MNV,无论有或没有系列稀释法匹拉韦 (T 705) (3.13-200 μg/mL)。一旦受感染的细胞在孵育三天后显示出完全的 CPE,就获得细胞培养物上清液并用于定量实时 RT-PCR (qRT-PCR) 以测量病毒 RNA 负载。将含有 2 mg/mL MTS 和 46 g/mL PMS 的 PBS 溶液(pH 6-6.5)组成的储备液在 MEM 中稀释 1/20,用于 MTS 还原测定。将 75 μL MTS/PMS 溶液添加到每个孔中两小时后,在 498 nm 处测量光密度 (OD)。为了确定 CPE 降低的百分比,必须计算 [(ODtreatment)MNW−ODVC]/[OD CC-ODVC]×100。在此计算中,ODCC 表示未处理、未感染细胞的 OD,而 ODVC 和(OD处理)CC< /sub> 分别代表经过处理的病毒感染细胞和未经处理的感染细胞。在 50% 的情况下可预防病毒诱发的 CPE 的化合物浓度称为 EC50。将法匹拉韦浓度应用于未感染的细胞三天,以便使用 MTS 方法评估该分子对宿主细胞的有害影响。活细胞的百分比计算为(OD处理/ODCC)×100,其中OD处理是指用化合物处理的未处理的未感染细胞,ODCC 是未经处理的未感染细胞的 OD。活细胞减少 50% 时的化合物浓度称为 CC50。 CC50/EC50 是用于计算选择性指数 (SI)[2] 的公式。
|
|
动物实验 |
|
|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
The bioavailability of favipiravir is almost complete at 97.6%. The mean Cmax for the recommended dosing schedule of favipiravir is 51.5 ug/mL. Studies comparing the pharmacokinetic effects of multiple doses of favipiravir in healthy American and Japanese subjects are below: Japanese subjects First Dose: Cmax = 36.24 ug/mL tmax = 0.5 hr AUC = 91.40 ugxhr/mL American subjects First Dose: Cmax = 22.01 ug/mL tmax = 0.5 hr AUC = 44.11 ugxhr/mL Japanese Subjects Final Dose: Cmax = 36.23 ug/mL Tmax = 0.5 hr AUC = 215.05 ugxhr/mL American Subjects Final Dose: Cmax = 23.94 ug/mL Tmax = 0.6 hr AUC = 73.27 ugxhr/mL When favipiravir was given as a single dose of 400 mg with food, the Cmax decreased. It appears that when favipiravir is given at a higher dose or in multiple doses, irreversible inhibition of aldehyde oxidase (AO) occurs and the effect of food on the Cmax is lessened. Favipiravir's metabolites are predominantly renally cleared. The apparent volume of distribution of favipiravir is 15 - 20 L. The recommended oral dosing regimen for favipiravir is as follows: Day 1: 1600 mg twice daily; Days 2-5: 600 mg twice daily. The reported CL/F for favipiravir 1600 mg dosed once daily is 2.98 L/hr ±0.30 and the CL/F values for favipiravir 600 mg dosed twice daily on days 1-2 and once daily on days 3-7 were 6.72 L/hr ±1.68 on Day 1, and 2.89 L/hr ±0.91 on Day 7. There is currently no reported clearance data for favipiravir 1600 mg dosed twice daily. Metabolism / Metabolites Favipiravir is extensively metabolized with metabolites excreted mainly in the urine. The antiviral undergoes hydroxylation primarily by aldehyde oxidase and to a lesser extent by xanthine oxidase to the inactive metabolite, T705M1. Biological Half-Life The elimination half-life of favipiravir is estimated to range from 2 to 5.5 hours. |
|
毒性/毒理 (Toxicokinetics/TK) |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation Favipiravir is an antiviral drug that is not approved in the United States by the US Food and Drug Administration. Information from one patient indicates that milk levels are low with a peak level at about 2 hours. One infant has reportedly been breastfed by a mother receiving favipiravir and pumping her breasts after doses with no adverse effects reported in the infant. Favipiravir has caused liver enzyme abnormalities, gastrointestinal symptoms, and serum uric acid elevations. If favipiravir is used in a nursing mother, these parameters should be monitored in the breastfed infant. ◉ Effects in Breastfed Infants A nursing mother with a positive PCR for COVID-19 was prescribed favipiravir with a loading dose of 1600 mg twice on the first day, then 600 mg every 12 hours from day 2 to day 5. She breastfed her 15-month-old COVID-19-negative infant just before each dose of the drug. She pumped and discarded her milk between doses. No symptoms were observed in the baby during drug use and no abnormalities were detected in the baby’s hematological and biochemistry tests. The infant was followed for 6 months and was fed breastmilk and complementary feeding, did not develop any symptoms. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding Favipiravir is 54% plasma protein-bound. Of this fraction, 65% is bound to serum albumin and 6.5% is bound to ɑ1-acid glycoprotein. |
|
参考文献 | ||
其他信息 |
Favipiravir is a member of the class of pyrazines that is pyrazine substituted by aminocarbonyl, hydroxy and fluoro groups at positions 2, 3 and 6, respectively. It is an anti-viral agent that inhibits RNA-dependent RNA polymerase of several RNA viruses and is approved for the treatment of influenza in Japan. It has a role as an antiviral drug, an anticoronaviral agent and an EC 2.7.7.48 (RNA-directed RNA polymerase) inhibitor. It is a primary carboxamide, a hydroxypyrazine and an organofluorine compound.
Discovered by Toyama Chemical Co., Ltd. in Japan, favipiravir is a modified pyrazine analog that was initially approved for therapeutic use in resistant cases of influenza. The antiviral targets RNA-dependent RNA polymerase (RdRp) enzymes, which are necessary for the transcription and replication of viral genomes. Not only does favipiravir inhibit replication of influenza A and B, but the drug has shown promise in the treatment of avian influenza, and may be an alternative option for influenza strains that are resistant to neuramidase inhibitors. Favipiravir has been investigated for the treatment of life-threatening pathogens such as Ebola virus, Lassa virus, and now COVID-19. Favipiravir is a pyrazinecarboxamide derivative with activity against RNA viruses. Favipiravir is converted to the ribofuranosyltriphosphate derivative by host enzymes and selectively inhibits the influenza viral RNA-dependent RNA polymerase. Drug Indication In 2014, favipiravir was approved in Japan to treat cases of influenza that were unresponsive to conventional treatment. Given its efficacy at targetting several strains of influenza, it has been investigated in other countries to treat novel viruses including Ebola and most recently, COVID-19. Mechanism of Action The mechanism of action of favipiravir is novel compared to existing influenza antivirals that primarily prevent entry and exit of the virus from cells. The active favipiravir-RTP selectively inhibits RNA polymerase and prevents replication of the viral genome. There are several hypotheses as to how favipiravir-RTP interacts with RNA dependent RNA polymerase (RdRp). Some studies have shown that when favipiravir-RTP is incorporated into a nascent RNA strand, it prevents RNA strand elongation and viral proliferation. Studies have also found that the presence of purine analogs can reduce favipiravir’s antiviral activity, suggesting competition between favipiravir-RTP and purine nucleosides for RdRp binding. Although favipiravir was originally developed to treat influenza, the RdRp catalytic domain (favipiravir's primary target), is expected to be similar for other RNA viruses. This conserved RdRp catalytic domain contributes to favipiravir's broad-spectrum coverage. Pharmacodynamics Favipiravir functions as a prodrug and undergoes ribosylation and phosphorylation intracellularly to become the active favipiravir-RTP. Favipiravir-RTP binds to and inhibits RNA dependent RNA polymerase (RdRp), which ultimately prevents viral transcription and replication. |
分子式 |
C5H4FN3O2
|
|
---|---|---|
分子量 |
157.1
|
|
精确质量 |
157.028
|
|
元素分析 |
C, 38.23; H, 2.57; F, 12.09; N, 26.75; O, 20.37
|
|
CAS号 |
259793-96-9
|
|
相关CAS号 |
|
|
PubChem CID |
492405
|
|
外观&性状 |
White to off-white solid powder
|
|
密度 |
1.6±0.1 g/cm3
|
|
沸点 |
552.6±50.0 °C at 760 mmHg
|
|
熔点 |
192 °C
|
|
闪点 |
288.0±30.1 °C
|
|
蒸汽压 |
0.0±1.5 mmHg at 25°C
|
|
折射率 |
1.600
|
|
LogP |
0.78
|
|
tPSA |
88.84
|
|
氢键供体(HBD)数目 |
2
|
|
氢键受体(HBA)数目 |
4
|
|
可旋转键数目(RBC) |
1
|
|
重原子数目 |
11
|
|
分子复杂度/Complexity |
282
|
|
定义原子立体中心数目 |
0
|
|
SMILES |
FC1=C([H])N([H])C(C(C(N([H])[H])=O)=N1)=O
|
|
InChi Key |
ZCGNOVWYSGBHAU-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C5H4FN3O2/c6-2-1-8-5(11)3(9-2)4(7)10/h1H,(H2,7,10)(H,8,11)
|
|
化学名 |
5-fluoro-2-oxo-1H-pyrazine-3-carboxamide
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (15.91 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (15.91 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (15.91 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: ≥ 2.5 mg/mL (15.91 mM) (饱和度未知) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 5 中的溶解度: ≥ 2.5 mg/mL (15.91 mM) (饱和度未知) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 6 中的溶解度: 4.55 mg/mL (28.96 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶. 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 6.3654 mL | 31.8269 mL | 63.6537 mL | |
5 mM | 1.2731 mL | 6.3654 mL | 12.7307 mL | |
10 mM | 0.6365 mL | 3.1827 mL | 6.3654 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT05155527 | Recruiting | Drug: Ivermectin Tablets Other: Placebo |
COVID-19 | Mahidol University | February 10, 2022 | Phase 2 |
NCT06024421 | Not yet recruiting | Drug: favipiravir Drug: Placebo |
Infectious Disease Pharmacology |
Institut National de la Santé Et de la Recherche Médicale, France |
November 2023 | Phase 1 |
NCT05940545 | Recruiting | Drug: Favipiravir Drug: Ribavirin |
CCHF | Liverpool School of Tropical Medicine |
July 12, 2023 | Phase 1 Phase 2 |
NCT04376814 | Completed | Drug: Favipiravir Drug: Hydroxychloroquine |
COVID-19 Favipiravir |
Baqiyatallah Medical Sciences University |
March 29, 2020 | Not Applicable |
NCT04464408 | Completed | Drug: Favipiravir Drug: Placebo |
COVID-19 | King Abdullah International Medical Research Center |
July 23, 2020 | Phase 2 Phase 3 |