Eicosapentaenoic Acid Ethyl Ester

别名: Eicosapentaenoic Acid Ethyl Ester; Epadel; Miraxion; AMR-101; EPA-E; LAX-101; ethyl icosapentate; 86227-47-6; ICOSAPENT ETHYL; Eicosapentaenoic acid ethyl ester; Epadel; ethyl eicosapentaenoate; Vascepa; Timnodonic acid ethyl ester; EPA E; LAX 101; MND 21; MND-21; AMR 101; AMR101; MND21; EPAE; LAX101 全顺-5,8,11,14,17-二十碳五烯酸乙酯;全顺式-5,8,11,14,17-二十碳五烯酸乙酯;Ethyl all cis-5,8,11,14,17-Eicosapentaenoate (stabilized with Tocopherols) 全顺-5,8,11,14,17-二十碳五烯酸乙酯;二十碳五烯酸乙酯; 二十碳五烯酸乙酯-D5; 顺-5,8,11,14,17-十二碳五烯酸乙酯;顺-二十碳五烯酸乙酯;顺-二十碳五烯酸乙酯标准品(JP);(5Z, 8Z, 11Z, 14Z, 17Z)- 二十碳五烯酸乙酯标准品;cis-5,8,11,14,17-二十碳五烯酸乙酯; EPA乙酯(C20:5)标准品; 二十碳五烯酸乙酯(顺-5,8,11,14,17);EPA乙酯
目录号: V9028 纯度: ≥98%
二十碳五烯酸乙酯是一种 omega-3 脂肪酸剂。
Eicosapentaenoic Acid Ethyl Ester CAS号: 86227-47-6
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
50mg
100mg
500mg
Other Sizes

Other Forms of Eicosapentaenoic Acid Ethyl Ester:

  • Eicosapentaenoic acid methyl ester
  • Heneicosapentaenoic acid
  • Eicosapentaenoic acid ethyl ester-d5
  • Heneicosapentaenoic acid-d6
  • Eicosapentaenoic acid methyl ester-d5 (eicosapentaenoic acid methyl ester-d5)
  • 花生五烯酸
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
二十碳五烯酸乙酯是一种 omega-3 脂肪酸剂。
生物活性&实验参考方法
靶点
Endogenous Metabolite
体内研究 (In Vivo)
ω-3脂肪酸可降低甘油三酯(TG)水平,但低密度脂蛋白胆固醇(LDL-C)水平的相应增加可能会影响心血管风险升高患者实现脂质目标。AMR101是一种研究药物,含有≥96%的纯二十碳五烯酸乙酯。III期多中心、安慰剂对照、随机、双盲、12周开放标签扩展研究(MARINE)调查了AMR101在229名TG水平非常高(≥500mg/dl)的患者中的疗效和安全性。AMR101 4 g/天显著降低了安慰剂调整后的TG水平中位数,与基线相比降低了33.1%(p<0.0001),AMR101 2 g/天降低了TG水平19.7%(p=0.0051)。LDL-C的变化很小,不显著。AMR101可以在不增加LDL-C水平的情况下显著降低TG。[1]
甲状腺激素影响几乎所有脂质代谢途径的反应。据报道,甲状腺功能减退症患者的血浆游离脂肪酸(FFA)浓度通常在正常范围内。然而,在这项研究中,我们发现一些甲状腺功能减退症患者的血浆FFA浓度高于正常范围。这些患者的甲状腺功能障碍症状比血浆游离脂肪酸浓度较低的患者轻。根据这些发现,我们假设FFA浓度的变化一定与甲状腺功能有关。然后,我们使用动物模型研究了高纯度二十碳五烯酸乙酯(EPA-E)对1-甲基-2-咪唑硫醇(MMI)诱导的甲状腺功能减退大鼠甲状腺功能的影响,EPA-E是一种来源于鱼油的n-3多不饱和脂肪酸。口服EPA-E抑制了MMI诱导的甲状腺功能减退大鼠甲状腺激素水平的降低和甲状腺滤泡的变化。这些发现表明,FFA可能影响甲状腺功能,EPA-E可能预防MMI诱导的甲状腺功能减退[2]
ω-3脂肪酸改善脂肪代谢的确切机制尚不完全清楚。本研究旨在确定二十碳五烯酸(EPA)乙酯给药对参与脂肪生成和脂肪酸氧化途径的几种肌肉、肝脏和脂肪组织基因表达水平的影响。喂食标准饮食(对照动物)或高脂肪饮食的雄性Wistar大鼠每天口服EPA乙酯(1g/kg)灌胃治疗5周。高脂饮食导致血浆胆固醇水平显著升高(P<0.01),EPA可逆转这一现象(P<0.001)。EPA治疗组的循环甘油三酯水平也显著降低(P<0.05)。EPA给药诱导了一些脂肪生成基因的显著下调,如肌肉乙酰辅酶a羧化酶β(ACCβ)(P<0.05)和肝脏脂肪酸合酶(FAS)(P<.05)。此外,在喂食对照饮食的EPA处理动物中观察到葡萄糖激酶(GK)基因表达的降低(P<0.01),而在喂食高脂肪饮食的组中发现GK mRNA水平显著升高。另一方面,在EPA处理组中没有发现参与β氧化的基因发生改变,如乙酰辅酶A合酶4(ACS4)、乙酰辅酶A合成酶5(ACS5)或乙酰辅酶A氧化酶(ACO)。令人惊讶的是,与预期相反,在EPA治疗后,观察到肝脏PPARalpha的表达水平显著降低(P<0.01)。这些发现表明,EPA乙酯处理能够下调参与脂肪酸合成的一些基因,而不影响β氧化相关基因的转录激活[3]。
动物实验
Twenty-nine male Wistar rats (6 weeks old) were housed in a temperature-controlled room (22±2°C) with a 12-h light–dark cycle. Animals were distributed into four experimental groups: control, control+EPA (CEPA), overweight and overweight+EPA (OEPA). All animals were maintained for an adaptation period of 4 days, fed chow diet and given deionized water ad libitum. After this period of time, the control and CEPA groups were fed a standard pelleted diet containing 76% carbohydrates, 6% lipids and 18% proteins (362 kcal/100 g). On the other hand, the overweight and OEPA groups were fed a cafeteria diet composed of the following items: paté, chips, bacon, chocolate, biscuits and pelleted diet (relative ratio, 2:1:1:1:1:1). The composition of this diet was as follows: 9% energy as protein, 29% energy as carbohydrate and 62% energy as lipid, by dry weight. All animals had ad libitum access to water and food for 5 weeks. The fatty acid composition of both control and high-fat diets was analyzed as previously reported, with the finding that both control and cafeteria diets have no EPA. Thus, the rats' only source of this fatty acid is oral gavage. Thus, the CEPA and OEPA groups were treated, simultaneously with the maintenance of diets for 35 days, with 1g/kg animal weight of highly purified EPA ethyl ester. This dose of EPA ethyl ester has been previously reported by Nobukata et al. to have a beneficial effect on diabetes prevention. The same volume of water was orally administrated to the control and overweight groups, as previously described in other studies, for 35 days. These control and overweight groups without treatment with any other type of fatty acid (such as saturated fatty acids with equal chain length as EPA or oleic acid) are more likely to be considered as control groups in our study design. This is because it has been demonstrated that supplementation with some other fatty acids is able to modify adiposity and circulating levels of biochemical and hormonal markers planned to be determined in the present study. [3]
Five-week-old male Wistar rats were used in the exper- iments described in this study. The rats were divided into two groups of six on the basis of their initial body weights. Hypothyroidism in rats was induced by sub- cutaneous injection of MMI at a daily dose of 1 mg with con- comitant oral administration of Eicosapentaenoic Acid Ethyl Ester/EPA-E at a daily dose of 300 mg/kg (or the same volume of saline as a control) for 4 weeks. After 4 weeks the rats were anesthetized with chloroform and blood samples and thyroid tissues were obtained. Part of the thyroid tissues were immediately frozen in liquid nitrogen and stored at 80 C until use. [2]
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Icosapent ethyl is de-esterfied, converted into active EPA, and then absorbed in the small intestine. It reaches peak plasma concentration in 5 hours post-oral administration. Very little (<1%) is left circulating in the plasma as EPA incorporates into phospholipids, TG's, and cholesteryl esters.
Icosapent ethyl is not renally excreted
Steady state volume of distribution of active EPA is 88 L
Total plasma clearance, EPA = 684 mL/hr
Metabolism / Metabolites
Once converted into active EPA, it is hepatically metabolized into acetyl Coenzyme A via beta-oxidation.
Biological Half-Life
The half life of EPA is 89 hours.
毒性/毒理 (Toxicokinetics/TK)
9831415 rat LD50 oral >20 gm/kg Yakkyoku. Pharmacy., 41(1621), 1990
9831415 rat LD50 intraperitoneal 15 gm/kg Yakkyoku. Pharmacy., 41(1621), 1990
9831415 rat LD50 subcutaneous >20 gm/kg Yakkyoku. Pharmacy., 41(1621), 1990
9831415 mouse LD50 oral >20 gm/kg Yakkyoku. Pharmacy., 41(1621), 1990
9831415 mouse LD50 intraperitoneal >20 gm/kg Yakkyoku. Pharmacy., 41(1621), 1990
参考文献

[1]. Jacobson TA. A new pure ω-3 eicosapentaenoic acid ethyl ester (AMR101) for the management of hypertriglyceridemia: the MARINE trial. Expert Rev Cardiovasc Ther. 2012 Jun;10(6):687-695.

[2]. Effect of eicosapentaenoic acid ethyl ester on hypothyroid function. J Endocrinol. 2001 Nov;171(2):259-65.

[3]. Down-regulation in muscle and liver lipogenic genes: EPA ethyl ester treatment in lean and overweight (high-fat-fed) rats. J Nutr Biochem. 2009 Sep;20(9):705-14.

其他信息
Ethyl (5Z,8Z,11Z,14Z,17Z)-icosapentaenoate is a long-chain fatty acid ethyl ester resulting from the formal condensation of the carboxy group of (5Z,8Z,11Z,14Z,17Z)-icosapentaenoic acid with the hydroxy group of ethanol. It has a role as an anticholesteremic drug, a marine metabolite, an antipsychotic agent, an antidepressant and a prodrug. It is a long-chain fatty acid ethyl ester and a polyunsaturated fatty ester. It is functionally related to an all-cis-5,8,11,14,17-icosapentaenoic acid.
Icosapent ethyl or ethyl eicosapentaenoic acid is a synthetic derivative of the omega-3 fatty acid eicosapentaenoic acid (EPA). It is used as an adjunct therapy for severe hypertriglyceridemia (TG levels > 500 mg/dL) and to reduce the risk of cardiovascular events in certain patients with elevated triglycerides. FDA approved on July 26, 2012.
Icosapent Ethyl is a highly purified omega-3 fatty acid that can decrease serum triglyceride levels. Icosapent ethyl reduces serum triglycerides without an increase in LDL cholesterol, but increases the cholesterol and triglyceride content in skeletal muscle.
See also: Icosapent (has active moiety).
Drug Indication
Icosapent ethyl is indicated as an adjunct to maximally tolerated statin therapy to reduce the risk of myocardial infarction, stroke, coronary revascularization, and unstable angina requiring hospitalizing in adult patients with elevated triglycerides (≥150 mg/dL) and established cardiovascular disease or who have diabetes mellitus and ≥2 other risk factors for cardiovascular disease. It is also indicated as an adjunct to diet to reduce triglyceride levels in adult patients with severe (≥500 mg/dL) hypertriglyceridemia.
FDA Label
Indicated to reduce cardiovascular risk as an adjunct to statin therapy.
Treatment of hypertriglyceridaemia
Mechanism of Action
Studies suggest that EPA reduces hepatic very low-density lipoprotein triglycerides (VLDL-TG) synthesis and/or secretion and enhances TG clearance from circulating VLDL particles. Potential mechanisms of action include increased β-oxidation; inhibition of acyl-CoA:1,2-diacylglycerol acyltransferase (DGAT); decreased lipogenesis in the liver; and increased plasma lipoprotein lipase activity.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C22H34O2
分子量
330.512
精确质量
330.255
元素分析
C, 79.95; H, 10.37; O, 9.68
CAS号
86227-47-6
相关CAS号
Eicosapentaenoic Acid;10417-94-4;Eicosapentaenoic acid ethyl ester-d5;1392217-44-5
PubChem CID
9831415
外观&性状
Colorless to light yellow liquid
密度
0.9±0.1 g/cm3
沸点
417.0±34.0 °C at 760 mmHg
闪点
103.1±24.0 °C
蒸汽压
0.0±1.0 mmHg at 25°C
折射率
1.496
LogP
7.32
tPSA
26.3
氢键供体(HBD)数目
0
氢键受体(HBA)数目
2
可旋转键数目(RBC)
15
重原子数目
24
分子复杂度/Complexity
425
定义原子立体中心数目
0
SMILES
C(/CCCC(=O)OCC)=C/C/C=C\C/C=C\C/C=C\C/C=C\CC
InChi Key
SSQPWTVBQMWLSZ-AAQCHOMXSA-N
InChi Code
InChI=1S/C22H34O2/c1-3-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22(23)24-4-2/h5-6,8-9,11-12,14-15,17-18H,3-4,7,10,13,16,19-21H2,1-2H3/b6-5-,9-8-,12-11-,15-14-,18-17-
化学名
ethyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
别名
Eicosapentaenoic Acid Ethyl Ester; Epadel; Miraxion; AMR-101; EPA-E; LAX-101; ethyl icosapentate; 86227-47-6; ICOSAPENT ETHYL; Eicosapentaenoic acid ethyl ester; Epadel; ethyl eicosapentaenoate; Vascepa; Timnodonic acid ethyl ester; EPA E; LAX 101; MND 21; MND-21; AMR 101; AMR101; MND21; EPAE; LAX101
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~100 mg/mL (~302.57 mM)
Ethanol : ~50 mg/mL (~151.29 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 5 mg/mL (15.13 mM) (饱和度未知) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,将 100 μL 50.0 mg/mL 澄清乙醇储备液加入到 400 μL PEG300 中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 5 mg/mL (15.13 mM) (饱和度未知) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 50.0 mg/mL 澄清乙醇储备液加入到 900 μL 20% SBE-β-CD 生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 5 mg/mL (15.13 mM) (饱和度未知) in 10% EtOH + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 50.0 mg/mL 澄清 EtOH 储备液添加到 900 μL 玉米油中并充分混合。


配方 4 中的溶解度: 2.5 mg/mL (7.56 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL 澄清的 DMSO 储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL 生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 5 中的溶解度: 2.5 mg/mL (7.56 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将100μL 25.0mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

配方 6 中的溶解度: ≥ 2.5 mg/mL (7.56 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.0256 mL 15.1281 mL 30.2563 mL
5 mM 0.6051 mL 3.0256 mL 6.0513 mL
10 mM 0.3026 mL 1.5128 mL 3.0256 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Targeting Vascular INflammation in Patients with Community-Acquired Pneumonia
CTID: NCT06710080
Phase: Phase 3    Status: Not yet recruiting
Date: 2024-11-29
Brain Amyloid and Vascular Effects of Eicosapentaenoic Acid
CTID: NCT02719327
Phase: Phase 2/Phase 3    Status: Completed
Date: 2024-11-26
Testing an Omega-3 Fatty Acid-Based Anti-Cancer Therapy for Patients With Triple-Negative Inflammatory Breast Cancer That Has Spread to Other Parts of the Body
CTID: NCT05198843
Phase: Phase 1/Phase 2    Status: Terminated
Date: 2024-09-04
Efficacy of Ethyl Icosapentate in Patients With Severe Hypertriglyceridemia
CTID: NCT04239950
Phase: Phase 3    Status: Completed
Date: 2024-07-15
IcoSApent ethyL to Slow Down Aortic VAlve Stenosis proGrEssion
CTID: NCT06466278
Phase: Phase 2    Status: Recruiting
Date: 2024-06-20
------------
A Phase 3, Multi-Center, Placebo-Controlled, Randomized,
CTID: null
Phase: Phase 3    Status: Prematurely Ended, Completed
Date: 2009-12-08
View More

Modulation of Cytochrome-P450 dependent eicosanoid formation by treatment with omega-3 PUFA (Omacor®)
CTID: null
Phase: Phase 4    Status: Completed
Date: 2009-11-30


A double-blind, placebo-controlled, parallel-group, multi-center study to investigate the effect of Omacor (n-3 PUFA) on lipid parameters in HIV infected patients treated with HAART
CTID: null
Phase: Phase 4    Status: Completed
Date: 2007-07-19
Full title of the trial : A multicentre, multi-national, double-blind, randomised, parallel group placebo-controlled trial of ethyl-EPA (ethyl-icosapent) in patients with Huntington’s Disease
CTID: null
Phase: Phase 3    Status: Ongoing, Prematurely Ended
Date: 2005-11-07

相关产品
联系我们