规格 | 价格 | 库存 | 数量 |
---|---|---|---|
500μg |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
体外研究 (In Vitro) |
药物化合物经过修饰,包含碳、氢和其他元素的稳定重同位素,主要作为在药物开发过程中影响定量的示踪剂。药物的药代动力学和功能范围可能会引起对突变的担忧。 [1]。延迟生成化合物的可能好处: (1) 延迟生成化合物的一个可能好处是它们可能能够扩展化合物的药代动力学特性。延迟生成化合物的潜在好处: (1)延迟生成化合物可以扩展化合物的药代动力学特性,提高其安全性、耐受性以及抵抗延迟生成药物不良反应的能力。增强肠道吸收。氘代化合物有可能降低肠壁和结肠所需的首过代谢水平,这将使更高比例的药物保持未代谢状态并达到高生物利用度水平。这些水平决定了药物在低剂量下的功效并提高了其耐受性。增强新陈代谢的特性。用药安全、药物代谢以及有毒或反应性代谢物减少都是代谢物的潜在好处 (4)。氘代化学物质是无害的,并且有可能减轻或消除药物化合物的负面影响。 (5)保存其药用品质。根据早期的研究,氘化化学品应该保持与氢对应物相当的效果和生化功效。
|
---|---|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
The extent of absorption is 80% with oral deutetrabenazine. As deutetrabenazine is extensively metabolized to its main active metabolites following administration, linear dose dependence of peak plasma concentrations (Cmax) and AUC was observed for the metabolites after single or multiple doses of deutetrabenazine (6 mg to 24 mg and 7.5 mg twice daily to 22.5 mg twice daily). Cmax of deuterated α-HTBZ and β-HTBZ are reached within 3-4 hours post-dosing. Food may increase the Cmax of α-HTBZ or β-HTBZ by approximately 50%, but is unlikely to have an effect on the AUC. Deutetrabenazine is mainly excreted in the urine as metabolites. In healthy subjects, about 75% to 86% of the deutetrabenazine dose was excreted in the urine, and fecal recovery accounted for 8% to 11% of the dose. Sulfate and glucuronide conjugates of the α-HTBZ and β-HTBZ, as well as products of oxidative metabolism, accounted for the majority of metabolites in the urine. α-HTBZ and β-HTBZ metabolites accounted for less than 10% of the administered dose in the urine. The median volume of distribution (Vc/F) of the α-HTBZ, and the β-HTBZ metabolites of deutetrabenazine are approximately 500 L and 730 L, respectively. Human PET-scans of tetrabenazine indicate rapid distribution to the brain, with the highest binding in the striatum and lowest binding in the cortex. Similar distribution pattern is expected for deutetrabenazine. In patients with Huntington's disease, the median clearance values (CL/F) of the α-HTBZ, and the β-HTBZ metabolites of deutetrabenazine are approximately 47 L/hour and 70 L/hour, respectively. Results of PET-scan studies in humans show that following intravenous injection of (11)C-labeled tetrabenazine or alpha-dihydrotetrabenazine, radioactivity is rapidly distributed to the brain, with the highest binding in the striatum and lowest binding in the cortex. Following oral administration of deutetrabenazine, the extent of absorption is at least 80%. In a mass balance study in 6 healthy subjects, 75% to 86% of the deutetrabenazine dose was excreted in the urine, and fecal recovery accounted for 8% to 11% of the dose. Urinary excretion of the alpha-dihydrotetrabenazine and beta-dihydrotetrabenazine metabolites from deutetrabenazine each accounted for less than 10% of the administered dose. Sulfate and glucuronide conjugates of the alpha-dihydrotetrabenazine and beta-dihydrotetrabenazine metabolites of deutetrabenazine, as well as products of oxidative metabolism, accounted for the majority of metabolites in the urine. Austedo is primarily renally eliminated in the form of metabolites. Metabolism / Metabolites Deutetrabenazine undergoes extensive hepatic biotransformation mediated by carbonyl reductase to form its major active metabolites, α-HTBZ and β-HTBZ. These metabolites may subsequently metabolized to form several minor metabolites, with major contribution of CYP2D6 and minor contributions of CYP1A2 and CYP3A4/5. In a mass balance study in 6 healthy subjects, 75% to 86% of the deutetrabenazine dose was excreted in the urine, and fecal recovery accounted for 8% to 11% of the dose. Urinary excretion of the alpha-dihydrotetrabenazine and beta-dihydrotetrabenazine metabolites from deutetrabenazine each accounted for less than 10% of the administered dose. Sulfate and glucuronide conjugates of the alpha-dihydrotetrabenazine and beta-dihydrotetrabenazine metabolites of deutetrabenazine, as well as products of oxidative metabolism, accounted for the majority of metabolites in the urine. In vitro experiments in human liver microsomes demonstrate that deutetrabenazine is extensively biotransformed, mainly by carbonyl reductase, to its major active metabolites, alpha-dihydrotetrabenazine and beta-dihydrotetrabenazine, which are subsequently metabolized primarily by CYP2D6, with minor contributions of CYP1A2 and CYP3A4/5, to form several minor metabolites. Biological Half-Life The half-life of total (α+β)-HTBZ from deutetrabenazine is approximately 9 to 10 hours. The half-life of total (alpha+beta)-dihydrotetrabenazine from deutetrabenazine is approximately 9 to 10 hours. |
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
IDENTIFICATION AND USE: Deutetrabenazine is used as adrenergic uptake inhibitor. It is is indicated for the treatment of chorea associated with Huntington's disease (HD) and tardive dyskinesia in adults. HUMAN STUDIES: Overdoses ranging from 100 mg to 1 g have been reported in the literature with tetrabenazine, a closely related vesicular monoamine transporter 2 (VMAT2) inhibitor. The following adverse reactions occurred with overdosing: acute dystonia, oculogyric crisis, nausea and vomiting, sweating, sedation, hypotension, confusion, diarrhea, hallucinations, rubor, and tremor. Indirect treatment comparison demonstrates that for the treatment of HD chorea, deutetrabenazine has a favorable tolerability profile compared to tetrabenazine. Deutetrabenazine may increase the risk for suicidality in patients with HD. Deutetrabenazine should be avoided in patients with congenital long QT syndrome and in patients with a history of cardiac arrhythmias. Deutetrabenazine and its deuterated alpha-dihydrotetrabenazine and beta-dihydrotetrabenazine metabolites were negative in in vitro chromosome aberration assay in human peripheral blood lymphocytes in the presence or absence of metabolic activation. ANIMAL STUDIES: Oral administration of deutetrabenazine (5, 10, or 30 mg/kg/day) to pregnant rats during organogenesis had no clear effect on embryofetal development. Oral administration of deutetrabenazine (doses of 5, 10, or 30 mg/kg/day) to female rats for 3 months resulted in estrous cycle disruption at all doses. Deutetrabenazine and its deuterated alpha-dihydrotetrabenazine and beta-dihydrotetrabenazine metabolites were negative in in vitro bacterial reverse mutation assay in the presence or absence of metabolic activation and in the in vivo micronucleus assay in mice. Protein Binding At doses ranging from 50 to 200 ng/mL _in vitro_, tetrabenazine protein binding ranged from 82% to 85%, α-HTBZ binding ranged from 60% to 68%, and β-HTBZ binding ranged from 59% to 63%. Similar protein binding pattern is expected for deutetrabenazine and its metabolites. Interactions Austedo is contraindicated in patients currently taking tetrabenazine or valbenazine. Austedo may be initiated the day following discontinuation of tetrabenazine Concomitant use of alcohol or other sedating drugs may have additive effects and worsen sedation and somnolence. The risk of parkinsonism, neuroleptic malignant syndrome (NMS), and akathisia may be increased by concomitant use of Austedo and dopamine antagonists or antipsychotics. Austedo is contraindicated in patients taking monoamine oxidase inhibitors (MAOIs). Austedo should not be used in combination with an MAOI, or within 14 days of discontinuing therapy with an MAOI. For more Interactions (Complete) data for Deutetrabenazine (6 total), please visit the HSDB record page. |
参考文献 |
The Lancet. 2017,4(8): 595–604.
|
其他信息 |
Deutetrabenazine is a novel, highly selective vesicular monoamine transporter 2 (VMAT2) inhibitor indicated for the management of chorea associated with Huntington’s disease. It is a hexahydro-dimethoxybenzoquinolizine derivative and a deuterated [DB04844]. The presence of deuterium in deutetrabenazine increases the half-lives of the active metabolite and prolongs their pharmacological activity by attenuating CYP2D6 metabolism of the compound. This allows less frequent dosing and a lower daily dose with improvement in tolerability. Decreased plasma fluctuations of deutetrabenazine due to attenuated metabolism may explain a lower incidence of adverse reactions associated with deutetrabenazine. Deutetrabenazine is a racemic mixture containing RR-Deutetrabenazine and SS-Deutetrabenazine. Huntington's disease (HD) is a hereditary, progressive neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and neuropsychiatric disturbances that interfere with daily functioning and significantly reduce the quality of life. The most prominent physical symptom of HD that may increase the risk of injury is chorea, which is an involuntary, sudden movement that can affect any muscle and flow randomly across body regions. Psychomotor symptoms of HD, such as chorea, are related to hyperactive dopaminergic neurotransmission. Deutetrabenazine depletes the levels of presynaptic dopamine by blocking VMAT2, which is responsible for the uptake of dopamine into synaptic vesicles in monoaminergic neurons and exocytotic release. As with other agents for the treatment of neurodegenerative diseases, deutetrabenazine is a drug to alleviate the motor symptoms of HD and is not proposed to halt the progression of the disease. In clinical trials of patients with HD, 12 weeks of treatment of deutetrabenazine resulted in overall improvement in mean total maximal chorea scores and motor signs than placebo. It was approved by FDA in April 2017 and is marketed under the trade name Austedo as oral tablets.
See also: Deutetrabenazine (annotation moved to). Drug Indication Deutetrabenazine is indicated in adults patients for the treatment of tardive dyskinesia and for chorea associated with Huntington's disease. Mechanism of Action The precise mechanism of action of deutetrabenazine in mediating its anti-chorea effects is not fully elucidated. Deutetrabenazine reversibly depletes the levels of monoamines, such as dopamine, serotonin, norepinephrine, and histamine, from nerve terminals via its active metabolites. The major circulating metabolites are α-dihydrotetrabenazine [HTBZ] and β-HTBZ that act as reversible inhibitors of VMAT2. Inhibition of VMAT2 results in decreased uptake of monoamines into synaptic terminal and depletion of monoamine stores from nerve terminals. Deutetrabenazine contains the molecule deuterium, which is a naturally-occurring, nontoxic hydrogen isotope but with an increased mass relative to hydrogen. Placed at key positions, deuterium forms a stronger hydrogen bond with carbon that requires more energy for cleavage, thus attenuating CYP2D6-mediated metabolism without having any effect on the therapeutic target. Therapeutic Uses Adrenergic Uptake Inhibitors /CLINICAL TRIALS/ ClinicalTrials.gov is a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. The Web site is maintained by the National Library of Medicine (NLM) and the National Institutes of Health (NIH). Each ClinicalTrials.gov record presents summary information about a study protocol and includes the following: Disease or condition; Intervention (for example, the medical product, behavior, or procedure being studied); Title, description, and design of the study; Requirements for participation (eligibility criteria); Locations where the study is being conducted; Contact information for the study locations; and Links to relevant information on other health Web sites, such as NLM's MedlinePlus for patient health information and PubMed for citations and abstracts for scholarly articles in the field of medicine. Dutetrabenazine is included in the database. Austedo is indicated for the treatment of chorea associated with Huntington's disease. /Included in US product label/ Austedo is indicated for the treatment of tardive dyskinesia in adults. /Included in US product label/ /EXPL THER/ Deutetrabenazine, an inhibitor of vesicular monoamine transporter type 2 (VMAT2) depletes presynaptic dopamine and is useful in the treatment of hyperkinetic movement disorders. This study explored the safety, tolerability, and preliminary efficacy of deutetrabenazine in adolescents with moderate-to-severe tics associated with Tourette syndrome (TS). In this open-label study of 12-18-year-old patients with TS-related tics, deutetrabenazine was titrated up to 36 mg/day over 6 weeks to adequately suppress tics without bothersome adverse effects (AEs), followed by maintenance at optimal dose for 2 weeks. An independent blinded rater assessed tic severity using the Yale Global Tic Severity Scale (YGTSS), which was the primary outcome measure. Secondary outcome measures included the TS Clinical Global Impression (TS-CGI) and TS Patient Global Impression of Change (TS-PGIC). Twenty-three enrolled patients received deutetrabenazine and had at least 1 post-baseline YGTSS assessment. The mean (SD [standard deviation]) baseline YGTSS Total Tic Severity Score (TTS) was 31.6 (7.9) and had decreased by 11.6 (8.2) points at week 8, a 37.6% reduction in tic severity (p<0.0001). The TS-CGI score improved by 1.2 (0.81) points (p<0.0001) and the TS-PGIC results at week 8 indicated that 76% of patients were much improved or very much improved compared with baseline. The mean (SD) daily deutetrabenazine dose at week 8 was 32.1 (6.6) mg (range 18-36 mg). One week after withdrawal of deutetrabenazine, the TTS scores increased by 5.6 (8.4) points, providing confirmation of the drug effect. No serious or severe adverse events were reported. The results of this open-label 8-week study suggest that deutetrabenazine is safe and associated with improvement in tic severity in adolescents with TS and troublesome tics. Drug Warnings /BOXED WARNING/ WARNING: DEPRESSION AND SUICIDALITY IN PATIENTS WITH HUNTINGTON'S DISEASE. Austedo can increase the risk of depression and suicidal thoughts and behavior (suicidality) in patients with Huntington's disease. Anyone considering the use of Austedo must balance the risks of depression and suicidality with the clinical need for treatment of chorea. Closely monitor patients for the emergence or worsening of depression, suicidality, or unusual changes in behavior. Patients, their caregivers, and families should be informed of the risk of depression and suicidality and should be instructed to report behaviors of concern promptly to the treating physician. Particular caution should be exercised in treating patients with a history of depression or prior suicide attempts or ideation, which are increased in frequency in Huntington's disease. Austedo is contraindicated in patients who are suicidal, and in patients with untreated or inadequately treated depression. Huntington's disease is a progressive disorder characterized by changes in mood, cognition, chorea, rigidity, and functional capacity over time. Vesicular monoamine transporter 2 (VMAT2) inhibitors, including deutetrabenazine, may cause a worsening in mood, cognition, rigidity, and functional capacity. Prescribers should periodically reevaluate the need for deutetrabenazine in their patients by assessing the effect on chorea and possible adverse effects, including sedation/somnolence, depression and suicidality, parkinsonism, akathisia, restlessness, and cognitive decline. It may be difficult to distinguish between adverse reactions and progression of the underlying disease; decreasing the dose or stopping the drug may help the clinician to distinguish between the two possibilities. In some patients, the underlying chorea itself may improve over time, decreasing the need for deutetrabenazine. Deutetrabenazine may increase the risk of akathisia, agitation, and restlessness in patients with Huntington's disease and tardive dyskinesia. In a 12-week, double-blind, placebo-controlled trial in Huntington's disease patients, akathisia, agitation, or restlessness was reported by 4% of patients treated with deutetrabenazine, compared to 2% of patients on placebo; in patients with tardive dyskinesia, 2% of patients treated with deutetrabenazine and 1% of patients on placebo experienced these events. Patients receiving deutetrabenazine should be monitored for signs and symptoms of restlessness and agitation, as these may be indicators of developing akathisia. If a patient develops akathisia during treatment with deutetrabenazine, the deutetrabenazine dose should be reduced; some patients may require discontinuation of therapy. A potentially fatal symptom complex sometimes referred to as neuroleptic malignant syndrome (NMS) has been reported in association with drugs that reduce dopaminergic transmission. While NMS has not been observed in patients receiving deutetrabenazine, it has been observed in patients receiving tetrabenazine (a closely related VMAT2 inhibitor). Clinicians should be alerted to the signs and symptoms associated with NMS. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatinine phosphokinase, myoglobinuria, rhabdomyolysis, and acute renal failure. The diagnosis of NMS can be complicated; other serious medical illness (e.g., pneumonia, systemic infection) and untreated or inadequately treated extrapyramidal disorders can present with similar signs and symptoms. Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever, and primary central nervous system pathology. /Tetrabenazine/ For more Drug Warnings (Complete) data for Deutetrabenazine (14 total), please visit the HSDB record page. Pharmacodynamics In clinical trials, there was an evidence of clinical effectiveness of deutetrabenazine in improving the symptoms of involuntary movements in patient with tardive dyskinesia by reducing the mean Abnormal Involuntary Movement Scale (AIMS) score. In a randomized, double-blind, placebo-controlled crossover study in healthy male and female subjects, single dose administration of 24 mg deutetrabenazine results in an approximately 4.5 msec mean increase in QTc. Effects at higher exposures to deutetrabenazine or its metabolites have not been evaluated. Deutetrabenazine and its metabolites were shown to bind to melanin-containing tissues including eyes, skin and fur in pigmented rats. After a single oral dose of radiolabeled deutetrabenazine, radioactivity was still detected in eye and fur at 35 days following dosing. |
分子式 |
C19H21D6NO3
|
---|---|
分子量 |
323.47
|
精确质量 |
323.237
|
元素分析 |
C, 70.55; H, 10.28; N, 4.33; O, 14.84
|
CAS号 |
1392826-25-3
|
相关CAS号 |
Tetrabenazine;58-46-8;Tetrabenazine Racemate;718635-93-9;(+)-Tetrabenazine;1026016-83-0;(+)-Tetrabenazine-d6;1977511-05-9
|
PubChem CID |
73437646
|
外观&性状 |
Light yellow to yellow solid powder
|
LogP |
3.176
|
tPSA |
38.77
|
氢键供体(HBD)数目 |
0
|
氢键受体(HBA)数目 |
4
|
可旋转键数目(RBC) |
4
|
重原子数目 |
23
|
分子复杂度/Complexity |
425
|
定义原子立体中心数目 |
2
|
SMILES |
O=C1[C@H](CC(C)C)CN2CCC3=CC(OC([2H])([2H])[2H])=C(OC([2H])([2H])[2H])C=C3[C@@]2([H])C1
|
InChi Key |
MKJIEFSOBYUXJB-VFJJUKLQSA-N
|
InChi Code |
InChI=1S/C19H27NO3/c1-12(2)7-14-11-20-6-5-13-8-18(22-3)19(23-4)9-15(13)16(20)10-17(14)21/h8-9,12,14,16H,5-7,10-11H2,1-4H3/t14-,16-/m1/s1/i3D3,4D3
|
化学名 |
rel-(3R,11bR)-3-isobutyl-9,10-bis(methoxy-d3)-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinolin-2-one
|
别名 |
Deutetrabenazine; Tetrabenazine-d6; SD809; GTPL-8707; SD-809; GTPL8707; SD 809; GTPL 8707; trade name Austedo
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 本产品在运输和储存过程中需避光。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.0915 mL | 15.4574 mL | 30.9148 mL | |
5 mM | 0.6183 mL | 3.0915 mL | 6.1830 mL | |
10 mM | 0.3091 mL | 1.5457 mL | 3.0915 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。