Degarelix

别名: Degarelix Free Base; HSDB 7817; HSDB7817; HSDB-7817 醋酸地加瑞克;地加瑞克;加瑞克标准品
目录号: V4133 纯度: ≥98%
地加瑞克是一种竞争性、可逆性促性腺激素释放激素受体 (GnRHR/LHRHR) 拮抗剂。
Degarelix CAS号: 214766-78-6
产品类别: GnRH Receptor
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Degarelix:

  • Degarelix acetate hydrate
  • 醋酸地加瑞克
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
地加瑞克是一种竞争性、可逆性促性腺激素释放激素受体 (GnRHR/LHRHR) 拮抗剂。地加瑞克可用于前列腺癌研究。
生物活性&实验参考方法
靶点
GnRHR
体外研究 (In Vitro)
地加瑞克仅表现出非常弱的组胺释放特性,并且在 LHRH 拮抗剂(包括 Cetrorelix 、 Abarelix 和 Ganirelix )中组胺释放能力最低 [1]。 Degarelix(1 nM-10 μM,0-72 小时)可降低所有前列腺细胞系(WPE1-NA22、WPMY-1、BPH-1、VCaP 细胞)的细胞活力,PC-3 细胞除外[2] 。 Degarelix(10 μM,0-72 小时)通过细胞凋亡对前列腺细胞生长产生直接影响[2]。细胞活力测定[2] 细胞系:WPMY-1、WPE1-NA22、BPH-1、LNCaP 和 VCaP 浓度:1 nM-10 μM 孵育时间:WPMY-1 细胞 48 小时和 72 小时,WPE1-NA22 细胞 72 小时、BPH-1 细胞(48 小时和 72 小时)、LNCaP 细胞(48 小时和 72 小时) 结果:除 PC-3 细胞外,所有前列腺细胞系的细胞活力均降低。细胞凋亡分析[2] 细胞系:WPE1-NA22、BPH-1、LNCaP 和 VCaP 浓度:10 μM 孵育时间:24、48 和 72 小时 结果:诱导 caspase 3/7 激活显着增加。
体内研究 (In Vivo)
地加瑞克(0-10 μg/kg;皮下注射;一次)以剂量依赖性方式降低去势大鼠血浆 LH 水平和血浆睾酮水平[3]。当在微粒体和来自动物肝组织的冷冻保存的肝细胞中孵育时,地加瑞克是稳定的。在大鼠和狗中,大部分地加瑞克剂量在 48 小时内通过尿液和粪便以等量(每种基质中 40-50%)消除,而在猴子中,主要排泄途径是粪便(50%)和肾脏(22 %)[4]。动物模型:雄性 Sprague-Dawley 大鼠,去势[3] 剂量:0.3、1、3 和 10 μg/kg 或 12.5、50 和 200 μg/kg 给药方法:皮下注射,一次 结果:产生剂量依赖性且可逆的最小有效剂量为 3 μg/kg 即可降低血浆 LH 水平。对于50μg/kg和200μg/kg剂量,吸收t1/2值为4分钟和30分钟,Tmax值为1小时和5小时,表观血浆消失t1/2值为12小时和67小时,分别。最小有效剂量为 1 μg/kg,血浆睾酮水平呈剂量依赖性下降。
动物实验
Male Sprague-Dawley rats, castrated
0.3, 1, 3 and 10 μg/kg or 12.5, 50, and 200 μg/kg
Subcutaneous injection, once
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Degarelix forms a depot at the site of injection after subcutaneous administration from which the drug slowly released into circulation. After a single bolus dose of 2mg/kg, peak plasma concentrations of degarelix occured within 6 hours at a concentration of 330 ng/mL. Ki = 0.082 ng/mL and 93% of receptors were fully suppressed; MRT = 4.5 days.
Fecal (70% to 80%) and renal (20%-30% of unchanged drug)
Central compartment: 8.88 - 11.4 L; Peripheral compartment: 40.9 L
Following subcutaneous administration of degarelix to prostate cancer patients the clearance is approximately 9 L/hr.
The protein binding in plasma of mouse, rat, dog, monkey, and humans was measured using the (3)H-degarelix and the ultracentrifugation technique. The plasma binding was approximately 90% in animals and humans. Distribution of radioactivity following administration of (3)H-degarelix was studied in rats, dogs and monkeys, doses were respectively 0.03 mg/kg, 0.003 mg/kg and 0.0082 mg/kg. Radioactivity of tissues was measured after sacrifice and necropsy of the animals. High concentrations were mainly seen at the s.c. injection site and in organs of excretion. Lower concentrations, but still higher than those in plasma were generally seen in some organs of the endocrine and reproductive systems most of which contain specific receptors for LHRH, and organs rich in reticuloendothelial cells during the elimination phase. There was no indication of tissue retention.
Balance of the radioactivity following SC administration of (3)H-degarelix was studied in rats, dogs and monkeys. Degarelix was mainly excreted unchanged via the urine and was subject to sequential peptidic degradation during its elimination via the hepato-biliary pathway in both animals and man.
After subcutaneous administration, degarelix forms a local depot at the injection site, leading to retarded and extended release of the active drug. The release from the depot is dependent on the concentration in the dose formulation and the dose volume. Furthermore, in repeat dose studies, increasing concentrations in the dose formulation resulted in sub-proportional increases in maximum plasma concentration (Cmax) and area under plasma concentration vs time in the dosing interval (AUC), an increase in trough plasma concentration (Ctrough), an increase in terminal half-life (t1/2), thus increasing the time to reach steady state, and a tendency of increase in time to maximum plasma concentration (Tmax).
Degarelix forms a depot at the injection site following subcutaneous administration from which the drug is very slowly released into circulation. Peak plasma concentrations of degarelix generally occur within 2 days following subcutaneous administration of a single 240 mg dose at a concentration of 40 mg/mL.. The pharmacokinetic behavior of degarelix is strongly influenced by its concentration in the injection solution. Approximately 90% of the drug is bound to plasma proteins. No quantitatively substantial metabolites have been detected in plasma following subcutaneous adminstration. Degarelix does not appear to be a substrate, inducer, or inhibitor of the cytochrome P-450 (CYP) enzyme or P-glycoprotein transport systems based on in vitro studies. Degarelix is eliminated in a biphasic manner, with a median terminal half-life of about 53 days following subcutaneous administration of a 240 mg dose at a concentration of 40 mg/mL in prostate cancer patients. Degarelix is subject to peptide hydrolysis during its passage through the hepatobiliary system and is mainly excreted as peptide fragments in feces. Approximately 20-30% of a given dose of degarelix is renally eliminated, suggesting that approximately 70-80% is excreted via the hepatobiliary system.
For more Absorption, Distribution and Excretion (Complete) data for Degarelix (6 total), please visit the HSDB record page.
Metabolism / Metabolites
70% - 80% of degarelix is subject to peptide hydrolysis during its passage through the hepatobiliary system and then fecally eliminated. No active or inactive metabolites or involvement of CYP450 isozymes.
The stability of degarelix was studied in liver microsomes from males in rat, guinea pig, rabbit, dog, monkey, and human, for up to 60 min. No degradation of degarelix was detected in liver microsomes from rabbit, dog, monkey, and human. Tendency to minor degradation of degarelix was seen in liver microsomes from guinea pig and rat. The in vitro metabolism of degarelix was further investigated in human liver microsomes for up to 60 min. The metabolism pattern of degarelix was reported to be similar in humans and animals. Degarelix was virtually no substrate for oxidative metabolism, but was degraded by peptidases with generation of various truncated peptides. Only low concentration of one metabolite was seen in human plasma, and this metabolite was also seen in rats, dogs and monkeys.
Biological Half-Life
Terminal half-life: 41.5 - 70.2 days; Absorption half-life: 32.9 hours; Half-life from injection site: 1.17 days.
Degarelix is eliminated in a biphasic manner, with a median terminal half-life of about 53 days following subcutaneous administration of a 240 mg dose at a concentration of 40 mg/mL in prostate cancer patients.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
Degarelix therapy has been associated with serum enzyme elevations in up to one-third of patients. The elevations, however, are generally mild and self-limited, resolving even without dose adjustment. ALT values above 3 times the ULN occur in less than 1% of patients. Occasional patients require drug discontinuation because of serum enzyme elevations, but no instances of liver injury with jaundice or clinically apparent acute liver injury were reported in the initial clinical trials of degarelix. Since its approval and more widescale use, there have been no published reports of clinically apparent liver injury attributed to degarelix, although its general use has been limited.
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Protein Binding
90% of the drug is bound to plasma proteins.
参考文献

[1]. An update on the use of degarelix in the treatment of advanced hormone-dependent prostate cancer. Onco Targets Ther. 2013 Apr 16;6:391-402.

[2]. In search of the molecular mechanisms mediating the inhibitory effect of the GnRH antagonistdegarelix on human prostate cell growth. PLoS One. 2015 Mar 26;10(3):e0120670.

[3]. Pharmacological profile of a new, potent, and long-acting gonadotropin-releasing hormoneantagonist: degarelix. J Pharmacol Exp Ther. 2002 Apr;301(1):95-102.

[4]. Metabolite profiles of degarelix, a new gonadotropin-releasing hormone receptor antagonist, in rat, dog, and monkey. Drug Metab Dispos. 2011 Oct;39(10):1895-903.

其他信息
Degarelix is a polypeptide.
Degarelix is used for the treatment of advanced prostate cancer. Degarelix is a synthetic peptide derivative drug which binds to gonadotropin-releasing hormone (GnRH) receptors in the pituitary gland and blocks interaction with GnRH. This antagonism reduces luteinising hormone (LH) and follicle-stimulating hormone (FSH) which ultimately causes testosterone suppression. Reduction in testosterone is important in treating men with advanced prostate cancer. Chemically, it is a synthetic linear decapeptide amide with seven unnatural amino acids, five of which are D-amino acids. FDA approved on December 24, 2008.
Degarelix is a Gonadotropin Releasing Hormone Receptor Antagonist. The mechanism of action of degarelix is as a Gonadotropin Releasing Hormone Receptor Antagonist. The physiologic effect of degarelix is by means of Decreased GnRH Secretion.
Degarelix is a parenterally administered, gonadotropin releasing hormone (GnRH) antagonist that effectively blocks androgen production and is used to treat advanced prostate cancer. Degarelix therapy is associated with serum enzyme elevations during therapy, but has yet to be linked to instances of clinically apparent acute liver injury.
Degarelix is a long-acting, synthetic peptide with gonadotrophin-releasing hormone (GnRH) antagonistic properties. Degarelix targets and blocks GnRH receptors located on the surfaces of gonadotroph cells in the anterior pituitary, thereby reducing secretion of luteinizing hormone (LH) by pituitary gonadotroph cells and so decreasing testosterone production by interstitial (Leydig) cells in the testes.
See also: Degarelix Acetate (has salt form).
Drug Indication
In Canada and the US, degarelix is indicated for the treatment of advanced prostate cancer in patients requiring androgen deprivation therapy. In the EU, it is more specifically indicated for the treatment of adult male patients with advanced hormone-dependent prostate cancer, and for treatment of high-risk localized and locally advanced hormone-dependent prostate cancer, in combination with radiotherapy or as a neo-adjuvant prior to radiotherapy.
FDA Label
Degarelix Accord is a gonadotrophin releasing hormone (GnRH) antagonist indicated: for treatment of adult male patients with advanced hormone-dependent prostate cancer . for treatment of high-risk localised and locally advanced hormone dependent prostate cancer in combination with radiotherapy. as neo-adjuvant treatment prior to radiotherapy in patients with high-risk localised or locally advanced hormone dependent prostate cancer .
FIRMAGON is a gonadotrophin releasing hormone (GnRH) antagonist indicated: - for treatment of adult male patients with advanced hormone-dependent prostate cancer . - for treatment of high-risk localised and locally advanced hormone dependent prostate cancer in combination with radiotherapy. - as neo-adjuvant treatment prior to radiotherapy in patients with high-risk localised or locally advanced hormone dependent prostate cancer .
Mechanism of Action
Degarelix competitively inhibits GnRH receptors in the pituitary gland, preventing the release of luteinizing hormone (LH) and follicle stimulating hormone. Reduced LH suppresses testosterone release, which slows the growth and reduces the size of prostate cancers.
Degarelix is a selective gonadotrophin releasing-hormone (GnRH) antagonist that competitively and reversibly binds to the pituitary GnRH receptors, thereby rapidly reducing the release of the gonadotrophins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), and thereby reducing the secretion of testosterone (T) by the testes. Prostatic carcinoma is known to be androgen sensitive and responds to treatment that removes the source of androgen. Unlike GnRH agonists, GnRH antagonists do not induce a LH surge with subsequent testosterone surge/tumour stimulation and potential symptomatic flare after the initiation of treatment.
Degarelix, a synthetic decapeptide, is a gonadotropin-releasing hormone (GnRH, luteinizing hormone-releasing hormone, gonadorelin) antagonist. The drug immediately, competitively, and reversibly binds to and blocks GnRH receptors in the pituitary, thereby reducing the release of gonadotropins (i.e., luteinizing hormone [LH], follicle stimulating hormone [FSH]) and, consequently, testosterone without initial stimulation of the hypothalamic-pituitary-gonadal axis and the associated testosterone surge. Degarelix appears to have low histamine-releasing potential compared with other GnRH antagonists; there have been no signs of immediate- or late-onset systemic allergic reactions with degarelix.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C₈₂H₁₀₃CLN₁₈O₁₆
分子量
1632.26
精确质量
1630.748
元素分析
C, 60.34; H, 6.36; Cl, 2.17; N, 15.45; O, 15.68
CAS号
214766-78-6
相关CAS号
Degarelix-d7; Degarelix acetate hydrate; 934246-14-7;214766-78-6;Degarelix-d7;934016-19-0
PubChem CID
16136245
外观&性状
White to off-white solid powder
密度
1.3±0.1 g/cm3
折射率
1.620
LogP
4.45
tPSA
512.87
氢键供体(HBD)数目
17
氢键受体(HBA)数目
18
可旋转键数目(RBC)
41
重原子数目
117
分子复杂度/Complexity
3390
定义原子立体中心数目
11
SMILES
C[C@H](C(N)=O)NC([C@H]1N(C([C@H](CCCCNC(C)C)NC([C@H](CC(C)C)NC([C@@H](CC2=CC=C(NC(N)=O)C=C2)NC([C@H](CC3=CC=C(NC([C@H](CC(N4)=O)NC4=O)=O)C=C3)NC([C@H](CO)NC([C@@H](CC5=CC=CN=C5)NC([C@@H](CC6=CC=C(Cl)C=C6)NC([C@@H](CC7=CC=C8C=CC=CC8=C7)NC(C)=O)=O)=O)=O)=O)=O)=O)=O)=O)CCC1)=O
InChi Key
MEUCPCLKGZSHTA-XYAYPHGZSA-N
InChi Code
InChI=1S/C82H103ClN18O16/c1-45(2)35-60(72(107)92-59(16-9-10-33-87-46(3)4)80(115)101-34-12-17-68(101)79(114)88-47(5)70(84)105)93-74(109)63(38-51-23-30-58(31-24-51)91-81(85)116)95-76(111)64(39-50-21-28-57(29-22-50)90-71(106)66-42-69(104)100-82(117)99-66)97-78(113)67(44-102)98-77(112)65(41-53-13-11-32-86-43-53)96-75(110)62(37-49-19-26-56(83)27-20-49)94-73(108)61(89-48(6)103)40-52-18-25-54-14-7-8-15-55(54)36-52/h7-8,11,13-15,18-32,36,43,45-47,59-68,87,102H,9-10,12,16-17,33-35,37-42,44H2,1-6H3,(H2,84,105)(H,88,114)(H,89,103)(H,90,106)(H,92,107)(H,93,109)(H,94,108)(H,95,111)(H,96,110)(H,97,113)(H,98,112)(H3,85,91,116)(H2,99,100,104,117)/t47-,59+,60+,61-,62-,63-,64+,65-,66+,67+,68+/m1/s1
化学名
(4S)-N-[4-[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2R)-2-[[(2R)-2-acetamido-3-naphthalen-2-ylpropanoyl]amino]-3-(4-chlorophenyl)propanoyl]amino]-3-pyridin-3-ylpropanoyl]amino]-3-hydroxypropanoyl]amino]-3-[[(2R)-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2R)-1-amino-1-oxopropan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxo-6-(propan-2-ylamino)hexan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-[4-(carbamoylamino)phenyl]-1-oxopropan-2-yl]amino]-3-oxopropyl]phenyl]-2,6-dioxo-1,3-diazinane-4-carboxamide
别名
Degarelix Free Base; HSDB 7817; HSDB7817; HSDB-7817
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~10 mg/mL (~6.1 mM)
H2O: ~5 mg/mL (~3.1 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 1 mg/mL (0.61 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 10.0 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 1 mg/mL (0.61 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 10.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 1 mg/mL (0.61 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 10.0 mg/mL 澄清 DMSO 储备液加入900 μL 玉米油中,混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 0.6126 mL 3.0632 mL 6.1265 mL
5 mM 0.1225 mL 0.6126 mL 1.2253 mL
10 mM 0.0613 mL 0.3063 mL 0.6126 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03689699 Active
Recruiting
Drug: Nivolumab
Drug: Degarelix
Drug: BMS-986253
Prostate Cancer
Adenocarcinoma of the Prostate
Mark Stein October 11, 2018 Phase 1
Phase 2
NCT03069937 Active
Recruiting
Drug: Docetaxel
Drug: Degarelix
Metastatic Prostatic
Adenocarcinoma
Medical University of South
Carolina
March 1, 2017 Phase 2
NCT04301414 Active
Recruiting
Drug: Degarelix
Drug: BMS-986218 and Degarelix
Prostate Cancer Columbia University February 25, 2020 Early Phase 1
NCT01994239 Active
Recruiting
Drug: Degarelix
Radiation: Pelvic Radiotherapy
Adenocarcinoma of Prostate UNICANCER December 2012 Phase 2
NCT01542021 Active
Recruiting
Drug: degarelix injection
Drug: androgen deprivation
therapy
Prostate Cancer
Prostatic Adenocarcinoma
Memorial Sloan Kettering
Cancer Center
February 2012 Not Applicable
生物数据图片
  • MTT assay showing the viability of prostate cell lines following treatment with the GnRH antagonist, degarelix. PLoS One . 2015 Mar 26;10(3):e0120670.
  • PLoS One . 2015 Mar 26;10(3):e0120670.
  • Gene ontology classification (based on biological processes) of degarelix-deregulated genes on BPH-1 cells. PLoS One . 2015 Mar 26;10(3):e0120670.
相关产品
联系我们