DDD107498

别名: DDD107498 DDD-107498 DDD 107498 DDD 498 DDD-498 DDD498 MMV121 MMV-121 MMV 121
目录号: V19315 纯度: ≥98%
DDD107498,以前称为 DDD 498,是一种抑制蛋白质合成的多级抗疟药。
DDD107498 CAS号: 1469439-69-7
产品类别: Parasite
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of DDD107498:

  • Cabamiquine succinate (DDD107498 succinate; DDD-498 succinate; M5717 succinate)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
DDD107498,以前称为 DDD 498,是一种抑制蛋白质合成的多阶段抗疟剂。 DDD107498 显示出满足各种临床需求的潜力,包括单剂量治疗、传播阻断和化学保护。 DDD107498 是根据血期疟疾寄生虫筛查项目开发的;其分子靶标已被确定为翻译延伸因子 2 (eEF2),它负责核糖体沿信使 RNA 的 GTP 依赖性易位,并且对于蛋白质合成至关重要。 eEF2 作为可行的抗疟药物靶点的这一发现为药物发现开辟了新的可能性。
生物活性&实验参考方法
体外研究 (In Vitro)
在老虎中,卡巴喹(24-48 小时)会降低蛋白质合成、滋养体和裂殖体发育,并导致培养异常 [1]。卡巴喹对 3D7 虎的作用 EC50 = 1.0 nM、EC90 = 2.4 nM、EC99 = 5.9 nM,具有出色的活性[1]。与肝细胞或肝微粒体结合,卡马奎宁具有良好的代谢稳定性[1]。
体内研究 (In Vivo)
在感染齿形动物猴的豚鼠中,卡巴喹(口服,单剂量)的 ED90(寄生虫减少 90%)为 0.57 mg/kg [1]。口服卡巴喹剂量为 3 mg/kg 的 Cmax 为 80 ng/mL,4 小时 Tmax,AUC 为 200542 ng·min/mL,F (%) 为 84% [2]。
参考文献

[1]. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015 Jun 18;522(7556):315-20.

[2]. Discovery of a Quinoline-4-carboxamide Derivative with a Novel Mechanism of Action, Multistage Antimalarial Activity, and Potent in Vivo Efficacy. J Med Chem. 2016 Nov 10;59(21):9672-9685.

*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C27H31FN4O2
分子量
462.5694
精确质量
462.243
CAS号
1469439-69-7
相关CAS号
Cabamiquine succinate;2444781-71-7
PubChem CID
71748268
外观&性状
White to off-white solid powder
密度
1.229±0.06
沸点
649.5±55.0 °C
LogP
3.2
tPSA
57.7
氢键供体(HBD)数目
1
氢键受体(HBA)数目
6
可旋转键数目(RBC)
7
重原子数目
34
分子复杂度/Complexity
647
定义原子立体中心数目
0
InChi Key
BENUHBSJOJMZEE-UHFFFAOYSA-N
InChi Code
InChI=1S/C27H31FN4O2/c28-22-7-8-25-23(17-22)24(27(33)29-9-12-31-10-1-2-11-31)18-26(30-25)21-5-3-20(4-6-21)19-32-13-15-34-16-14-32/h3-8,17-18H,1-2,9-16,19H2,(H,29,33)
化学名
6-fluoro-2-(4-(morpholinomethyl)phenyl)-N-(2-(pyrrolidin-1-yl)ethyl)quinoline-4-carboxamide
别名
DDD107498 DDD-107498 DDD 107498 DDD 498 DDD-498 DDD498 MMV121 MMV-121 MMV 121
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 本产品在运输和储存过程中需避光。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~100 mg/mL (~216.19 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.40 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (5.40 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (5.40 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.1618 mL 10.8092 mL 21.6183 mL
5 mM 0.4324 mL 2.1618 mL 4.3237 mL
10 mM 0.2162 mL 1.0809 mL 2.1618 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • a. eEF2 promotes the GTP-dependent translocation of the ribosome along mRNA during protein synthesis. b. Homology model of Plasmodium falciparum eEF2. The mapped mutations from each strain are colour coded by EC50 fold (red high, amber moderate, green low). c. Live cell imaging of P. falciparum expressing an extra copy of eEF2 (WT) fused to GFP. The image is representative of >50 parasites visualized on two independent occasions. d. Protein and DNA/RNA synthesis were evaluated by measuring the incorporation of [35S]-labelled methionine and cysteine ([35S]-Met/Cys) (upper panel) and [3H]-labelled hypoxanthine (lower panel) into asynchronous 3D7 wild-type (○) and 3D7 DDD107498-resistant line (eEF2-E134A/P754A) (●) after 40 min incubation with DDD107498, cycloheximide or actinomycin D. Radiolabeled incorporation, measured as cpm, was normalised as % of incorporation against inhibitor concentration (means ± s.d.; n=3 independent experiments each run in duplicate). e. The EC50 values for transfectants against DDD107498 (means ± s.d.; n=4-7 independent experiments, each run in duplicate). Statistical significance was determined by the Mann-Whitney U test: *P<0.05; **P<0.01. f. DDD107498-resistant line (eEF2-Y186N) transfected episomally with plasmids expressing either WT-eEF2 or eEF2-Y186N (means ± s.d.; n=3 independent experiments each run in duplicate). Nature . 2015 Jun 18;522(7556):315-20.
  • Effect of DDD107498 on parasite morphology a. Phenotype of P. falciparum in peripheral blood of NOD-scid IL-2R_null mice engrafted with human erythrocytes. Blood samples were taken at day 5 and 7 of the assay (1 and 2 asexual cycles, respectively) after the start of treatment with vehicle or DDD107498 at day 3. The bidimensional flow cytometry plots measure the murine (Ter-119-PE+) and human (Ter-119-PE−) erythrocytes, and the presence of nucleic acids (infected SYTO-16+ events). The blue circles indicate the region of infected erythrocytes. Vehicle-treated mice showed a characteristic pattern of staining with SYTO-1635, which correlated with the presence of healthy rings, trophozoites and schizonts in blood smears. Conversely, mice treated with DDD107498 at 50 mg/kg showed only trophozoites with condensed cytoplasm and some pyknotic cells at day 5 (red circle in flow cytometry plot and corresponding blood smears). By day 7, few infected erythrocytes were detected by flow cytometry and blood smears revealed parasites with a similar morphology to those at day 5. This suggests that trophozoites are the most sensitive population since the cycle is interrupted at this stage. The images displayed are taken from a mouse with high levels of parasitemia. At least 50 parasites were counted per sample screened in the microscope. Of these, 4 photos of representative parasite phenotype were selected to represent the morphology of the most prevalent phenotype. Thus, this is a qualitative assessment. b. Stage specificity assays using synchronised cultures. For morphological analysis of antimalarial drug action, thin blood smears were prepared, fixed and stained with Giemsa followed by examination with an upright microscope using an oil-immersion lens (100×). For parasitemia determination, a total number of 1000 red blood cells (corresponding to 5 microscopic fields) were counted. R to T. Abnormal trophozoites observed after 24h exposure of synchronized rings to DDD107498. T to S. Trophozoites do not develop into schizonts after 24h exposure to DDD107498. S-R. No ring stages are observed 24h after treatment of schizonts with DDD107498. c. Percentage parasitemia in the red blood cells. R = ring stage, T = trophozoite, S = schizont. Nature . 2015 Jun 18;522(7556):315-20.
  • Fitness phenotypes of DDD107498-resistant parasite lines Unmarked Dd2 and DDD107498-selected parasites with various levels of resistance were assessed for growth in a competition assay, relative to a Dd2-GFP reference line. a. Equal numbers of unmarked test lines were mixed with the Dd2-GFP reference, in triplicate wells, and the ratio of non-fluorescent and fluorescent cells assessed by flow cytometry over time. At day 0, all lines had a 1:1 ratio with the Dd2-GFP reference. Increased growth of the test line over the Dd2-GFP reference, which has a slower growth rate than unmarked WT Dd2, would result in an increased ratio of Test:Dd2-GFP. b. Growth assay of 4 different test lines: i) WT Dd2, ii) EF2-E134D, iii) EF2-L775F, and iv) EF2-Y186N, relative to Dd2-GFP. A faster growth rate of WT Dd2 (DDD107498 IC50 0.14 nM) relative to the fluorescent Dd2-GFP line is reflected in an increased ratio over time. The low-level resistant line EF2-E134D (IC50 5.8 nM) did not attain a WT growth rate, and the high-level resistant lines EF2-L775F (IC50 660 nM) and EF2-Y186N (3100 nM) were further impaired. Means ± s.d.; n=4 independent experiments each run in triplicate. Nature . 2015 Jun 18;522(7556):315-20.
相关产品
联系我们